
Anomaly detection on temporal graphs for
suppression of adversarial communication in

multi-agent reinforcement learning

Dobromir Marinov

Hughes Hall

June 2024

Submitted in partial fulfillment of the requirements for the
Master of Philosophy in Advanced Computer Science

Total page count: 61

Main chapters (excluding front-matter, references and appendix): 43 pages (pp 7–49)

Main chapters word count: 14,760

Methodology used to generate that word count:

texcount -1 -sum -merge main.tex

Declaration

I, Dobromir Marinov of Hughes Hall, being a candidate for the Master of Philosophy

in Advanced Computer Science, hereby declare that this project report and the work

described in it are my own work, unaided except as may be specified below, and that the

project report does not contain material that has already been used to any substantial

extent for a comparable purpose. In preparation of this project report I did not use text

from AI-assisted platforms generating natural language answers to user queries, including

but not limited to ChatGPT. I am content for my project report to be made available to

the students and staff of the University.

Signed:

Date: June, 2024

2

Abstract

Anomaly detection on temporal graphs for suppression of adver-
sarial communication in multi-agent reinforcement learning

Adversarial communication in multi-agent reinforcement learning (MARL) systems can

have significant negative impact on their performance. It can lead to sub-optimal per-

formance of the systems, due to poor decision-making, caused by incorrect or misleading

information. Previous methods for eliminating or reducing adversarial communication

have shown that the spatial characteristics of multi-agent communication can be used for

its detection in specific cases. However, their effectiveness is limited and not well docu-

mented, especially in complex scenarios and against malicious agents with knowledge of

the defence strategies. Furthermore, while many prior works have focused on the spa-

tial nature of agent-to-agent communication, its temporal nature and characteristics have

been largely neglected. In this work, we test a number of different hypotheses for detec-

tion and suppression of adversarial communication in MARL systems, based on techniques

from anomaly detection on temporal graphs. Furthermore, we propose a novel method

and systematically evaluate its effectiveness on two complex, cooperative scenarios using

a variety of different adversarial agents. Finally, we develop a framework for conducting

MARL experiments with adversarial communication that can provide a unified approach

for designing consistent and reproducible experiments.

3

Acknowledgements

I would like to thank my supervisor, Prof Amanda Prorok and my co-supervisor, Jan

Blumenkamp, for their guidance and for giving me the oportunity to work on this project.

I would also like to thank Ajay Govindarajan for his continuous support throughout my

degree. I would have not been able to achieve this without the patience, support and love

of my parents and my grandmother, who believed in me even when I did not. Finally,

I would like to thank my little brothers, Archie, Kiwi, Deo and Toby for reminding me

what truly matters in life.

4

Contents

1 Introduction 7

2 Background 9

2.1 Single-agent reinforcement learning . 9

2.1.1 Bellman equation . 10

2.1.2 Policies . 10

2.2 Multi-agent reinforcement learning . 12

2.3 Constraints and variations . 13

2.3.1 Decision making . 13

2.3.2 Reward function . 14

2.3.3 Observability . 14

2.3.4 Communication . 15

3 Related work 17

3.1 Graph Neural Networks . 17

3.2 Proximal Policy Optimisation . 18

3.3 Independent Proximal Policy Optimisation 20

3.4 Adversarial attacks on MARL communication 20

3.5 Detection and suppression of adversarial communication 21

4 Hypotheses and novel contributions 24

4.1 Motivation . 24

4.2 Anomaly detection in temporal graphs . 25

4.3 Proposed research direction . 26

4.3.1 Method . 26

4.3.2 Limitations . 26

4.3.3 Hypotheses . 26

4.3.4 Contributions . 27

5 Design and implementation 29

5.1 Model . 29

5.2 Agent types . 30

5

5.3 Scenarios . 31

5.3.1 Discovery . 31

5.3.2 VIP . 32

5.3.3 Adversarial framework implementation 35

6 Experiments and results 37

6.1 Discovery scenario . 37

6.1.1 First hypothesis . 38

6.1.2 Second hypothesis . 39

6.1.3 Third hypothesis . 41

6.1.4 Fourth hypothesis . 41

6.1.5 Fifth hypothesis . 42

6.1.6 Sixth hypothesis . 43

6.2 VIP scenario . 44

6.2.1 First hypothesis . 45

6.2.2 Second hypothesis . 46

6.2.3 Third hypothesis . 47

6.2.4 Fourth and Fifth hypotheses . 47

6.2.5 Sixth hypothesis . 48

7 Conclusions and future work 49

A Visualisations 57

A.1 Discovery scenario . 57

A.1.1 Cooperative agents . 57

A.1.2 Self-interested agent . 58

A.1.3 Disruptive agent . 58

A.1.4 Malicious agent . 58

A.1.5 Adversarial message suppression . 58

A.1.6 Omniscient agent . 58

A.2 VIP scenario . 58

A.2.1 Cooperative agents . 58

A.2.2 Self-interested agent . 58

A.2.3 Disruptive agent . 58

A.2.4 Malicious agent . 58

A.2.5 Adversarial message suppression . 58

A.2.6 Omniscient agent . 58

B Hyperparameters 59

C Reproducibility 61

6

Chapter 1

Introduction

Multi-agent reinforcement learning (MARL) is a sub-field of reinforcement learning in

which, as the name suggests, multiple agents learn how to solve tasks in a shared en-

vironment. Based on the specific characteristics of the MARL environments and their

limitations, we can subdivide the MARL problems into more specific groups, such as cen-

tralised and decentralised problems, cooperative and competitive problems and problems

in which the agents have full or limited vision. One promising research direction to co-

operation in systems without central authority has been the addition of communication

channels between the agents. A key insight is that the agent-to-agent communication

networks can be modelled as graphs, lending themselves to learning techniques from the

fields of graph representation learning and deep geometric learning. In multi-agent coop-

eration, which is an important problem for efficiently solving collaborative tasks, effective

communication has been shown to be a cornerstone of many successful, decentralised

multi-agent reinforcement learning systems [1]. More specifically, it has been shown that

agent-to-agent communication allows agents to learn how to cooperate efficiently, while

also giving rise to emergent behaviour strategies that might not be achievable without

it [2].

Unfortunately, much like humans, agents can lie too. In some cases, producing messages

that do not correspond to the true state of the agent or the underlying environment could

be due to faulty sensors or disruptions in the communication network. However, the

reasons behind such messages can be much more nefarious. They could be produced by

agents that are trying to achieve higher performance, by exploiting the trust of cooperative

agents, or could be produced by agents specifically designed to attack and disrupt the

cooperation in the system. Such adversarial communication can, in many cases, negatively

impact the performance of the system, compromise its security and in severe cases, lead

to catastrophic failures by causing agents to take inefficient or even dangerous actions.

It is therefore important that robust and reliable methods for counteracting adversarial

communication are developed. Surveying the scientific literature, we can see that a few

7

different methods have been proposed for detection and suppression of adversarial commu-

nication in MARL systems, with varying degrees of success, with some of them performing

well only under specific conditions [3]. Furthermore, because of the wide variety of MARL

tasks and the computationally heavy nature of training MARL systems, some experiments

have been limited to environments that only use 2D discrete space, which makes it unclear

how well their methods would perform under more general conditions. While most of the

prominent techniques in the field, in one way or another, exploit the spatial character-

istics of the agents’ messages, almost no work has been done on the exploitation of the

temporal coherence between messages. To that end, we conduct a systematic research on

the topic of using temporal information from MARL communication, in order to predict

and prevent adversarial communication. The main research question that we are trying

to answer is how effective will an algorithm for detection and suppression of adversarial

communication, based on temporal information, be. We formulate six related hypotheses

based on this question and design appropriate experiments to test them. We focus on

creating experimental problems which are difficult to solve without communication, in

order to ensure that no other external factors are interfering with our results, while also

making sure that our work is reproducible, in order to encourage fair comparison.

8

Chapter 2

Background

In this chapter we provide an overview of the necessary background information, in order

to contextualise our problem, explain how it fits in the larger field of reinforcement learning

and explain the foundation on which it is built. We start with a discussion on single-agent

reinforcement learning and incrementally build towards the main focus of this project,

namely multi-agent reinforcement learning problems with communication.

2.1 Single-agent reinforcement learning

Reinforcement learning is a sub-field of machine learning in which agents interact with an

environment, in order to maximise a numerical reward signal. The environment in which

an agent operates is typically represented as a Markov decision process (MDP) [4].

Definition 1. A Markov decision process is defined with a tuple ⟨S,A, P,R, γ⟩, where S
denotes the finite set of possible environment states, A denotes the finite set of possible

agent actions, P : S × A → ∆(S) is the state transition function, where ∆ is the set of

probability distributions over the state space S. The reward function is denoted R : S ×
A× S → R and determines the immediate reward received by the agent for transitioning

from state s ∈ S to s′ ∈ S, by executing action a ∈ A. The discount factor is denoted

as γ ∈ [0, 1) and it determines the weight of future rewards, compared to immediate

rewards [5, 6].

At each time-step t, the agent chooses an action at ∈ A, which transitions the system

from state st ∈ S to st+1 ∈ S, according to P , and receives reward r, according to R. A

visual representation of a Markov decision process is shown in Figure 2.1. The aim of the

agent is to find a policy π : S → ∆(A) that maximises the expected discounted return E,

as shown in Equation (2.1).

E

∑
t≥0

γtR(st, at, st+1)

∣∣∣∣∣∣at ∼ π(·|st), s0

 (2.1)

9

Environment

Agent

Action
at ∈ A

State
st ∈ S

Reward
rt ∈ R

Figure 2.1: Diagram of a Markov decision process.

The definition of the state-value function Vπ(s), which represents the expected discounted

return for an agent, starting from a specific state s ∈ S and following a particular policy

π thereafter, is shown in Equation (2.2).

Vπ(s) =

∑
t≥0

γtR(st, at, st+1)

∣∣∣∣∣∣at ∼ π(·|st), s0 = s

 (2.2)

Similarly, the definition of the action-value function Qπ(s, a), which represents the ex-

pected discounted return for an agent, taking a specific action a ∈ A in a given state

s ∈ S and then following a particular policy π thereafter, is shown in Equation (2.3).

Qπ(s, a) =

∑
t≥0

γtR(st, at, st+1)

∣∣∣∣∣∣at ∼ π(·|st), a0 = a, s0 = s

 (2.3)

2.1.1 Bellman equation

An important property of value functions is that they satisfy the Bellman equation, as

shown in Equation (2.4).

Vπ(s) =
∑

a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γVπ(s
′) (2.4)

The Bellman equation for Vπ expresses the relationship between the values of two consec-

utive states s ∈ S and s′ ∈ S. It is recursive in nature and states that the value of being

in the current states s ∈ S is equal to the immediate reward r ∈ R, received from taking

an action a ∈ A, which transitions the environment to a state s′ ∈ S, plus the discounted

value of the new state s′ ∈ S [4].

2.1.2 Policies

We can compare different policies based on their expected returns and we say that a policy

π′ is better than a policy π, if the expected return of π′ is greater than or equal to the

10

expected return of π, for all states, as shown in Equation (2.5).

π ≥ π′ ⇔ V vπ(s) ≥ V ′
π(s), ∀s ∈ S (2.5)

For finite MDPs, it is guaranteed that there is at least one optimal policy π∗, which is

better or equal to all other policies [4]. We refer to the state-value function of the optimal

policy π∗ as the optimal state-value function and we can see its definition in Equation (2.6).

V ∗(s) = max
π

Vπ(s), ∀s ∈ S (2.6)

Similarly, the optimal action-value function is denoted as Q∗ and is defined in Equa-

tion (2.7).

Q∗(s, a) = max
π

Qπ(s, a), ∀s ∈ S & ∀a ∈ A (2.7)

Using the definitions above, we can define the Bellman optimality equation for V ∗ as

shown in Equation (2.8).

V ∗(s) =
∑
s′,r

p(s′, r|s, a)[r + γV ∗(s′)] (2.8)

Additionally, the Bellman optimality equation forQ∗ is defined as shown in Equation (2.9).

Q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

Q∗(s′, a′)] (2.9)

These equations reflect the optimality principle, which states that we can achieve an

optimal policy for a multi-stage problem by making optimal decisions at each step [4].

Even though it would make sense for a reinforcement learning agent to try to learn

one of the optimal policies that are guaranteed to exist, it is infeasible in practice, due

to the large cost in computation and memory. It is therefore necessary to use different

methods in order to create accurate approximations of the value functions and the policies.

Historically, this has been done using methods from dynamic programming [7] and Monte-

Carlo based methods [8]. In recent years, methods based on deep-learning techniques,

such as Deep Q-Networks (DQNs) [9] and Actor-Critic methods [10] have been effectively

utilised in order to achieve state-of-the-art results in the field [11, 12].

11

2.2 Multi-agent reinforcement learning

As the name suggests, multi-agent reinforcement learning is also focused around decision-

making problems in a shared environment, with the number of agents involved being

greater than one. The generalisation of the Markov decision process to a multi-agent case

is the stochastic game [3], which can be used as a model for MARL problems.

Definition 2. A 2-player stochastic game is a tuple ⟨S,A1, A2, P, R1, R2⟩, where S denotes

the state space, Ak denotes the action space of agent k, Rk : S × A1 × A2 is the reward

function for agent k and P : S × A1 × A2 → ∆ is the state transition function, where ∆

is the set of probability distributions over the state space S.

Environment

Agent 1

Agent 2

Agent k

a1t ∈ A1

Action
a2t ∈ A2

Action
akt ∈ Ak

Joint action

Joint state
st ∈ S

Reward
r1t ∈ R1

rkt ∈ Rk

r2t ∈ R2

Action

Figure 2.2: Diagram of a stochastic game.

At each time step t, each of the k agents execute an action akt ∈ Ak, which transitions the

system from state st ∈ S, to a state st+1 ∈ S, according to P , and each agent k receives a

reward rkt ∈ Rk. A visual representation of a stochastic game is shown in Figure 2.2. Each

agent aims to optimise its own long term reward by finding an optimal policy π∗
k. However,

this differs from the single-agent case, as each agent’s choice is not only controlled by its

own policy, but is also influenced by the actions of the other agents in the environment.

An important concept for finding such optimal policies π∗
k, in MARL scenarios, is the

Nash equilibrium [13].

Definition 3. A set of policies (π∗
1, π

∗
2, . . . , π

∗
k) are said to be in Nash equilibrium, if for

every agent k and every possible policy πk:

V k
π∗
k,π

∗
−k
(s) ≥ V k

πk,π
∗
−k
(s), ∀s ∈ S

Where π∗
−k denotes the set of policies for all agents other than the agent k.

In simple terms, it can be described as the equilibrium point π∗, from which no agent has

12

any incentive to change its policy, as long as the other agents’ policies remain the same. It

should be noted that reaching Nash equilibrium does not guarantee that the system will

achieve the best outcome for all agents combined and it is simply a stable point in which

each agent is making the best choice possible for themselves and no agent can improve

their outcome further.

2.3 Constraints and variations

We will now focus on the various types of constraints that we can impose on the different

components of MARL problems and discuss the nature of the scenarios that they give

rise to.

2.3.1 Decision making

Based on how the agents’ decisions are made, we can partition the different types of MARL

problems into two distinct groups: centralised problems and decentralised problems. In

a centralised context, we assume that there is a central decision making system, which

has access to the observations from all agents and computes joint action for the agents,

based on the complete state information of the environment. The main benefit of having

a central system is that it has information from all participants in the system instead of

relying on partial observations and incomplete information. Furthermore, the fact that

the system can leverage the experiences of all agents simultaneously can allow for faster

learning convergence.

In comparison, in the absence of a central decision making system, each individual agent

has to instead make decisions based on its own local observations and without direct

access to the global state or the actions of the other agents. Because of the fact that

agents in the environment are responsible for their own decisions, without relying on a

central authority, the learning of optimal policies can be more challenging. On the other

hand, the agent can learn independent policies that can give rise to emergent behaviour

strategies, which may not be achievable in the centralised case [14]. These strategies can

achieve better performance in more complex environments which contain unpredictable

dynamics and can provide better scalability [15]. Due to the limited knowledge of indi-

vidual agents, decentralised systems are more susceptible to performance reduction from

sub-optimal decision making when further constraints and limitations are present in the

environment [16]. Additional constraints and limitations that increase the complexity

of decentralised systems can be imposed on both the agents’ observations and commu-

nication. We discuss the different scenarios that could emerge, based on the possible

limitations and constraints for agent observations and communication, in detail in Sec-

tion 2.3.3 and Section 2.3.4, respectively.

13

2.3.2 Reward function

Depending on the reward functions of individual agents, a number of different types of

MARL scenarios can occur, such as cooperative, competitive and mixed.

In the cooperative setting, agents have a shared reward function and receive reward signals

based on their collective performance. As there is no competition between the agents,

they are incentivised to work together and learn cooperative strategies that maximise

their joint reward.

In the competitive setting, agents typically have opposing goals and this type of MARL

problems can be modelled as zero-sum games. One way to construct such scenarios is

by having two agents which have reward functions that are the inverse of each other.

This creates a competition between the agents. The Nash equilibrium point, in this type

of scenarios, has been shown to produce robust policies, that optimise the worst-case

long-term reward [5].

In the mixed setting, there are no restrictions on the relationship between the rewards of

the agents. This type of scenario can be modelled as a general-sum game [17] in which

agents might have some shared goals, but can also have specific individual objectives that

are different from those of everyone else. Each agent can be viewed as self-interested,

because they are simply trying to maximise their own reward, regardless of whether or

not their actions affect the other agents in the system in a negative way.

2.3.3 Observability

Depending on the information from the environment that is available to the central de-

cision making system, in the centralised case, or to the individual agents, in the decen-

tralised case, we can distinguish between reinforcement learning scenarios that have full

observability and more complex scenarios that have only partial observability. In the full

observability case, the decision makers have full observability of the environment, i.e. they

have perfect information of the system state s ∈ S, for any given timestamp t. This means

that the decision maker can directly perceive all of the relevant variables that describe

the state of the environment, at any given time, and thus make decisions based on the

full context. However, a lot of real world problems have agents with limited observability

of the current state of the environment and the actions of other agents, which adds an

additional layer of complexity that can result in a reduced system performance, due to

sub-optimal decision making [16]. Such scenarios can be defined as extensive-form games

or as partially observable Markov decision processes (POMDPs) [18]. In POMDPs, the

true state of the system is unknown and thus the agents have to use a belief state, which is

defined as the probability distribution over all of the possible states. This represents the

current knowledge that the agent has about the environment and is iteratively updated

based on its observations. Some examples of reinforcement learning scenarios with limited

14

observability are card games like Poker, in which agents can only see their own cards and

the cards on the table, but are unable to see the cards of other agents when making a

decision. Another example are robot navigation scenarios in which the robots have access

only to their own local observations of the environment, which are typically limited to a

finite distance around them. A key characteristic of such environments is the exploration

vs exploitation trade off, which forces the agents to balance their actions which gather

new information about the state of their environment with actions that make use of that

information, in order to maximise their reward.

2.3.4 Communication

One way for agents with limited observability in MARL systems to obtain more infor-

mation about their environment is to allow them to communicate with each other. This

allows agents not only to exchange information about their observations, helping them

build a more realistic picture of the surrounding environment without having to observe

it themselves, but also to share critical information about their intentions and beliefs with

other agents [19]. The most naive approach is to allow all agents in the environment to

exchange messages between each other. This is referred to as global communication and it

allows for global coordination between agents and sharing of information throughout the

entire environment. If we imagine all agents as nodes in a graph and the communication

channels between them as the edges of the graph, then global communication problems

form complete graphs.

However, in many practical cases, the communication range may be limited to only the

agents’ local area in the environment, similarly to the limits discussed previously on the

agents’ observations. Extending the graph representation to this case would result in

graphs in which only neighbouring agents with distance between them that is smaller

than the communication range are connected by communication edges. In other words,

the agents are limited to exchanging messages only locally, between close neighbours.

In addition to that, there are different variations of local communication that can allow

for multi-hop communication, which effectively propagate the messages further through

the network of agents. While it could be beneficial to relay local information further,

delays in the communication and the related overheads in the infrastructure could pose

further challenges for real life applications. Despite the challenges, it has been shown that

inter-agent communication could enable agents to learn better performing policies [19].

Furthermore, for some specific MARL problems, such as problems in which the agents

need to coordinate with each other, but are unable to observe each others’ positions

directly, inter-agent communication could be the only way to achieve cooperation.

Precisely because of the impact that inter-agent communication can have on the perfor-

mance of decentralised cooperative systems, it is crucial for the stability of the system

to ensure that all communication between the participating agents is accurate. The

15

most common communication types which can cause degraded performance of coopera-

tive systems can be categorised into two groups, faulty communication and intentionally

untruthful communication.

Faulty communication is typically produced unintentionally, for example by agents that

have faulty sensors and produce incorrect observations or by faults in the communication

channels, which result in data augmentation during transfer. In real world scenarios,

it might be possible to detect this type of misleading communication directly on the

agent level [20]. However, in order to ensure robustness, it is still worth considering

the development of specialised communication algorithms that can identify abnormal

messages, in order to make the inter-agent communication system capable of detecting

and filtering them and thus making it more robust.

Untruthful communication may also be produced intentionally, for example by self-interested

or malicious agents which fabricate messages in order to influence the cooperative sys-

tem for their own benefit. Because agents in communication based cooperative systems

base their decisions on the information that they receive from other agents, disrupting

the communication is a prime vector of attack for malicious agents [21, 22]. It is there-

fore critical to develop safeguarding strategies for detection and suppression of misleading

communication, whether it has been produced accidentally, due to a fault, or maliciously.

16

Chapter 3

Related work

In this chapter we provide an overview of the state-of-the-art methods for reinforcement

learning which we are going to use in our experimental work, summarise the key scien-

tific works on the topic of detection and suppression of adversarial communication and

highlight their weaknesses.

3.1 Graph Neural Networks

Graph Neural Networks are a class of deep learning models which are designed for solving

machine learning tasks using data that can be represented as graphs. This type of neu-

ral networks exploit the inherent relationships between the graph nodes and edges and

employ different methods for message aggregation, such as message-passing and graph

convolutions [23]. This enables them to learn complex structural patterns in the data and

extract meaningful information from it to a greater degree, compared to other traditional

machine learning methods which treat nodes as independent entities.

One of the most prominent variants of GNNs, due to their generality and high perfor-

mance, are the Message Passing GNNs (MPGNNs). This type of GNN is characterised

by its unique iterative message-passing step, that propagates information between the

nodes of the graphs which are connected by an edge [24]. The message passing step

utilises a message passing function msg(·), which is applied to pairs of connected nodes

in the graph and computes a message m, based on their current representation and the

information from the edge that connects them. An aggregation function agg(·) is then

used in order to combine all of the messages (m1,m2, . . . ,m|N(k)|) that each node receives

from its neighbours, where N(k) are the neighbouring nodes that node k has, as shown

in Equation (3.1). In the final step, an upd(·) function is applied to the result in order to

compute the new hidden states of the graph nodes, as shown in Equation (3.2),

17

M t+1
k =

∑
i∈N(k)

msg(ht
k, h

t
i) (3.1)

ht+1
k = upd(ht

k,M
t+1
k) (3.2)

where M t+1
k is the message computed for node k at time step t + 1, ht

k and ht
i are the

current representation of the node k and its neighbouring node i. The agg(·) function is a

simple sum over the messages between the source node and its neighbours and the upd(·)
function updates the state h of the node k with the value of the aggregated messages.

The function msg(·) and upd(·) are typically defined as neural networks that are learned

during the training of the GNN model.

The choice of different GNN architectures, including aggregation functions, is largely

dependent on the type of task that the GNN model is trying to solve and the data that

it has access to. Learning problems on GNNs can typically be divided into three distinct

categories: node level tasks, edge level tasks and graph level tasks. Node level tasks

include problems such as node classification, in which the neural network is trying to

predict the category of individual nodes of the graph and node clustering, in which nodes

are grouped together into different clusters based on their similarity. Edge level tasks

include link prediction, in which the GNN tries to predict the existence or the likelihood

of an edge connecting two nodes and edge classification, in which edges are assigned

labels or are split into categories. Finally, graph level tasks include graph classification,

which aims to predict the category or label of the full graph, as well as graph regression,

in which a property of the graph is predicted using a continuous value. We utilise the

power and versatility of GNNs in multiple parts of our work as the MARL scenarios with

communication, that we base our experiments on, naturally lend themselves to being

represented using graph structures. We describe the purpose and the structures of the

GNNs that we use in greater detail in Chapter 5 of the report.

3.2 Proximal Policy Optimisation

A lot of state-of-the-art algorithms used for reinforcement learning are similar to the

advantage actor-critic (A2C) method by Konda et al. [25]. The key characteristic of this

method is that it employs two separate neural networks, one for the actor and one for the

critic. During the training process, the actor network tries to learn the optimal policy,

which is used as mapping from states to actions. The actor network is responsible for

deciding which actions an agent should take in a given state, with the aim of maximising

the expected return. In contrast, the critic network tries to learn the value function during

training, which estimates the cumulative reward that an agent can obtain from a specific

state or state-action pair. The purpose of the critic network is to evaluate the quality of

18

the actions that the actor networks chooses. The difference between the cumulative reward

predicted by the critic and the true cumulative reward for a given state can be viewed as

an estimate of how good a particular action a is on a state s, compared to a randomly

sampled action for the same state, using the policy from the previous iteration [26]. This

value is known as the advantage Ât and is defined as shown in Equation (3.3),

Ât = Rt − Vπ(st) (3.3)

where Rt denotes the true cumulative reward and Vπ(st) denotes the critic’s estimate of

the cumulative reward, using policy π, for a state s, at a time step t. The advantage

estimation helps the actor network in the learning process by providing a signal that

indicates when an action results in a better than expected outcome so that such actions

can be taken more often.

One challenge that is present in the previously described actor-critic methods is that

there are no guarantees that the policy will improve [27]. For example, in the cases when

an action is taken and its corresponding advantage is negative, the method knows that

selection of that particular action should be discouraged in the future, but it does not

know by how much. This approach is prone to having large gradient updates, that can

result in policy updates which move the policy to unexplored areas of the action space,

making it perform worse.

In order to tackle these problems and guarantee that the policy will improve, the Trust

Region Policy Optimisation (TRPO) [28] algorithm introduces a constraint for the size

of the policy update, which is based on the Kullback-Leibler divergence of the old and

the current policies. Despite its success, the added complexity of the TRPO algorithm

has led to further developments in the field, with one of the most prominent alternatives

being the PPO algorithm [29]. PPO also follows the actor-critic paradigm and simplifies

the update process that was developed by TRPO by introducing a clipped surrogate

objective function. The clipped surrogate objective function is used in order to penalise

large policy updates, similar to the constraint introduced in TRPO, but has the benefit

of being easier to compute and optimise. The clipping that is used by PPO is based on

the probability ratio between the new policy and the old policy and its definition is shown

in Equation (3.4),

pt(θ) = πθ(at|st)/πold
θ (at|st) (3.4)

where pt(θ) denotes the probability ratio at time step t for policy parameters θ, at denotes

an action a, at a time step t, st denotes the state s, at a time step t and πθ and πold
θ

denote the new policy and the old policy, with parameters θ, respectively. The ratio can

be interpreted as the probability of taking an action at in state st, under the new policy,

19

divided by the probability of taking the same action at in the same state st, under the

old policy. Consequently, if the ratio has a value higher than 1, then it means that the

action at is more likely under the new policy than under the old policy and vice versa, for

a value lower than 1. The main advantages of PPO, which have made it the more popular

choice for many practical applications, is that it is simpler to implement and faster to

train, while still managing to achieve similar performance to TRPO and in some cases

even outperform it [29].

3.3 Independent Proximal Policy Optimisation

Independent PPO is an extension of the PPO algorithm to multi-agent reinforcement

learning scenarios [30]. The core idea behind IPPO is that each of the agents in the system

learns independently using the PPO algorithm, without having explicit coordination or

cooperation with the other agents. It enables independent learning and allows agents to

learn their own policies, based on their individual experiences and rewards, without the

need for a centralised controller. The algorithm uses the same mechanism for updating the

policies as the standard PPO algorithm in order to ensure that consecutive policies do not

deviate too much from each other, which guarantees stability during the learning process.

There are also hybrid approaches to IPPO, which use centralised techniques to enable

faster learning and better convergence. For example, it is possible for a set of agents to

train an IPPO model using individual observations while sharing model parameters. This

allows them to learn homogeneous policies faster, while still not explicitly sharing their

individual information with each other [31].

3.4 Adversarial attacks on MARL communication

A number of different studies have demonstrated the adverse effects that adversarial at-

tacks targeting the communication in multi-agent systems can have on their performance.

One approach, discussed by Tu et al. [32], is the generation of perturbed messages which

are carefully crafted in order to resemble genuine cooperative communication, but contain

misleading information, in order to confuse the cooperative agents. Such attacks can be

difficult to detect due to the subtle differences between adversarial and genuine messages,

but their impact over time can significantly reduce the performance of the targeted sys-

tem. Policy manipulation attacks are another type of adversarial attacks that aim to

directly manipulate the learned policies of the agents by injecting false experiences into

the training data or by providing deceptive observations during the training procedure.

The former case can also be referred to as policy poisoning.

It has been shown that adversarial agents do not always need to have access to the target

system, in order to learn specific behaviour which allows them to influence it. They could

instead gain knowledge and learn how to exploit vulnerabilities in MARL systems that

20

share common elements with the target system or are simplified approximations of it. The

adversaries can then use that knowledge to transfer and adapt their adversarial strategies

to the target environment. This class of attack methods is known as transfer attacks. [32]

Blumenkamp et al. [33] have shown how adversarial communication can emerge naturally,

during the learning process, from the presence of self-interested agents in the environment.

They demonstrate that under specific conditions, such as when there are limited resources

and agents are competing for finite local rewards, manipulative communication can be

exhibited even when the agents are not explicitly programmed to lie. All of the previously

described scientific works show that the presence of adversarial communication negatively

affects the performance of the cooperative systems and thus in order to ensure stability

and resilience against adversarial attacks, it is important to develop robust algorithms for

detection and suppression of adversarial communication.

3.5 Detection and suppression of adversarial commu-

nication

There has been a number of recent works focused on the problem of detection and filtering

of adversarial communication in multi-agent reinforcement learning scenarios.

In the paper “Gaussian Process Based Message Filtering for Robust Multi-Agent Co-

operation in the Presence of Adversarial Communication” by Mitchell et al. [34], the

authors explore the idea of suppression of adversarial communication in MARL systems

with local communication between the agents. In their experimental setup, they combine

Graph Neural Networks with a probabilistic model based on Gaussian Processes in order

to compute posterior probabilities, representing the confidence levels of the truthfulness

of the agents’ messages. While the authors show that their proposed method is capable of

enabling agents to maintain high performance and achieve their cooperative goals despite

the presence of adversarial communication, their approach is not capable of identifying

the specific adversarial agents and tracking them over multiple time steps. Furthermore,

their approach takes into account only the agent messages from the current time step,

without having any access to historical information, relying on the detection of anomalous

messages solely on the spatial characteristics of the communication.

Another major shortcoming of their work is the lack of diversity in the experimental

scenarios and their limited scope. More specifically, the first experiment that they conduct

assumes an infinite communication range between the agents, while the second experiment

that they conduct is limited to an environment with discrete state and action spaces.

Furthermore, in both experiments the authors use agents that are self-interested and not

actively malicious and in the second scenario, they never evaluate the performance of

their proposed method with multiple self-interested agents.

The paper “Robust cooperative multi-agent reinforcement learning via multi-view message

21

certification” by Yuan et al. [35] also explore the topic of detection and suppression of

adversarial communication. While their approach is different, compared to the previously

discussed work by Mitchell et al. [34], they still share some common characteristics, such

as the use of frameworks based on variational autoencoders (VAEs) to extract a joint

message representation from all received messages, that can then be used in order to

capture the shared information between encodings. One key difference in their approach

is the use of perturbations in the latent space of the state representation, during the

training procedure, in order to simulate the worst-case message deviations. The proposed

method in this paper has similar drawbacks to the one discussed previously. The message

filtering procedure is strictly based on the communication from the current time step,

without using any information from consecutive messages that the agents exchange. In

addition to that, the attacks, which are used in the experimental setup are quite limited

in scope, considering only attacks that perturb the contents of the messages, making

it unclear whether the proposed approach would perform well under different classes of

attacks.

The paper “Certifiably Robust Policy Learning against Adversarial Multi-Agent Commu-

nication” by Sun et al. [36] proposes a general defence framework that exploits the fact

that messages from different agents contain overlapping information of the environment.

Their approach differs from the previous work by training an ensemble of policies using

random subsets of the communication messages sent by the agents, with the result being

that each one of the policies specialises in a different subset of communication informa-

tion. The trained policies are then used during deployment by combining their outputs,

through methods such as weighted averaging, in order to produce the final output. The

authors also provide theoretical analysis of their approach and show that it can provide

guarantees for the lower bound of the expected reward, under specific conditions. The

specific conditions needed to be satisfied in order for the theoretical guarantees to hold are

also one of the main weaknesses of this work, as acknowledged by the authors themselves.

Coupled with the fact that it is unclear if the ensemble model would scale well with a

high number of agents and messages, it is unclear if the proposed defence approach would

generalise well to more complex scenarios.

The work “Mis-spoke or mis-lead: Achieving Robustness in Multi-Agent Communicative

Reinforcement Learning” by Xue et al. [22] takes a different approach and formulates the

adversarial communication problem as a two-player zero-sum game. For their adversarial

attacks, they develop a novel attack model that tries to learn an optimal adversarial

policy in order to generate malicious messages. For their defence strategy, they utilise an

anomaly detection model for detecting adversarial messages and a message reconstructor

model that tries to reconstruct the original messages from the adversarial messages. Their

experimental setup shows that their defence strategy is effective in mitigating the effects of

the adversarial attacks for various multi-agent environments. One important drawback of

this work is that in their experiments, the authors assume a level of knowledge about the

22

attack strategy of the adversary agents. In addition, during the phase in which they try

to recover the multi-agent coordination using the message filtering method that they have

proposed, the attacking method stays constant. In their work, there are no experiments

that show the effectiveness of the defence strategy in the cases where the attacking agents

have full knowledge of it and are allowed to dynamically change their attacks based on

that information.

Another research direction for detection of deceptive information in multi-agent networks

is based on fingerprinting [37, 38] and watermarking [39]. The paper by Gil et al. [37]

utilises the concept of fingerprinting, which refers to the unique patterns of received signal

strengths that are exhibited by the communication of pairs of robots. The agents’ finger-

prints can then be used to verify the integrity of the messages transmitted by agents, by

comparing the information encoded in the fingerprints, such as relative positioning, to the

information transmitted through the communication channels. Furthermore, the authors

demonstrate that the unique patterns of the fingerprints can also be used for verifying

the identity of the agents. Similar fingerprinting approach is used by Renganathan et

al. in combination with a W-MSR consensus algorithm [38]. The authors show that the

algorithm weights and averages the messages received from neighbouring agents in order

to achieve agreement even in the presence of adversarial agents.

In contrast, the paper “Detecting Deception Attacks on Autonomous Vehicles via Linear

Time-Varying Dynamic Watermarking” by Porter et al. [39], proposes a novel approach

for detection of malicious messages based on linear time-varying dynamic watermarking.

Their proposed technique embeds hidden signals, which are undetectable to the attackers,

into the messages, but can be verified by the agents in the system. The authors show

that their technique can reliably detect a wide range of attacks and can perform well

under challenging conditions. Unfortunately, their work relies on the assumption that

the attackers do not possess knowledge of the watermarking scheme, which in practical

scenarios would be highly unlikely and if compromised, the watermarking defence mecha-

nism would be completely ineffective. All of the previously described methods, which use

fingerprinting techniques and watermarking, suffer from similar drawbacks related to the

fact that an adversary with full knowledge of the defence schemes would likely be able

to bypass them or significantly reduce their effectiveness. Similarly to all other works

described in this section, the defence strategies do not make use of any of the temporal

information that can be obtained over multiple time steps, even though the proposed

defence mechanisms could be used to track agents and their communication over time.

23

Chapter 4

Hypotheses and novel contributions

In this chapter, we present our hypotheses for detection and suppression of adversarial

communication in cooperative systems and the gaps in the knowledge that they are trying

to address. We also propose a novel technique for detection and suppression of adversarial

communication in MARL scenarios, based on anomaly detection on temporal graphs and

discuss our contributions and the engineering artefacts produced as part of our work.

4.1 Motivation

All of the previously discussed works fail to take into consideration the temporal nature

of the multi-agent systems. When considering a multi-agent system in which the agents

share their observations by communicating, we expect that over consecutive time steps,

fully-functional cooperative agents will produce messages which will exhibit coherent tem-

poral characteristics. This insight has been used successfully by Tu et al. [32], in order to

make their online attack more feasible. However, it has been neglected in the context of

developing new defence mechanisms, in favour of techniques relying on spatial information

only. We can see how temporal information would be beneficial for developing a robust

defence strategy by considering the most simple case in which an agent has faulty sen-

sors and thus is not actively malicious but is still producing misleading communication.

We expect that the communication of such an agent will exhibit different characteristics

compared to the standard cooperative communication, as already demonstrated by pre-

vious works, such as the work done by Mitchell et al. [34] and we further expect that the

communication will not be spatiotemporally coherent over consecutive time steps. Tak-

ing into account these differences, we can build an algorithm which detects them and is

able to discern malicious communication based on them, in a similar fashion to how prior

works use spatial information. In the more complex cases, in which we have adversarial

communication from actively malicious agents, we expect that there will be a trade-off

between the effectiveness of the adversarial communication and its temporal resemblance

to normal, cooperative communication, in the same way that previous works have shown

24

that there are differences in the spatial coherence between adversarial and cooperative

messages. In other words, we expect that even if a malicious agent is aware of the detec-

tion strategy that is being used to recognise and filter adversarial messages and it knows

how it works, learning how to avoid it will still pose a challenge and will decrease the

overall effect of the adversarial messages on the cooperative system. We expect this to

be the case due to the fact that in order for the messages of the adversarial agent to

avoid detection, they will have to exhibit spatio-temporal characteristics similar to those

of the cooperative messages. This constraint would limit the range of possible malicious

messages that the agent can generate and we suspect that this subset of messages would

be more inefficient in influencing the cooperative agents, compared to their unbounded

counterpart.

4.2 Anomaly detection in temporal graphs

Anomaly detection in graphs has been studied extensively [40] and has been utilised

successfully in order to achieve state-of-the-art results in many practical tasks, such as

financial fraud detection [41] and analysis of social networks [42]. However, many prob-

lems do not contain static information and thus a more powerful representation, such as

dynamic graphs (also known as temporal graphs) could be used in order to model them

more accurately. Temporal graphs capture the evolving nature of the relationships be-

tween the nodes and provide us with a theoretical framework to model time dependent

systems, such as transactions in a financial network or vehicles in traffic. Similarly to

static graphs, the problem of detecting anomalies on temporal graphs is a challenging

problem that has found a lot of practical use cases, such as traffic prediction [43] and

disease outbreak detection [44]. This has led to the development of a number of differ-

ent algorithms for anomaly detection in temporal graphs. The main idea behind these

algorithms is that they use the structural information from the graphs and their features,

but also incorporate the temporal information from the graphs evolution, in order to

identify atypical behaviour and specific patterns that deviate from the norm. This class

of algorithms is capable of exploiting the differences in coherence, or lack thereof, in the

spatio-temporal characteristics of the graph nodes and edges over multiple time steps, in

order to detect anomalous entities, as shown by the work of Li et al. [45]. The authors

demonstrate that their proposed method named “Radar” is capable of detecting various

styles of anomalies without prior knowledge about their specific characteristics. The work

by Wang et al. [46] extends the idea of anomaly detection in attributed networks by

leveraging the power of graph neural networks to learn representation of nodes and ap-

ply one-class classification to identify the anomalous nodes. The authors show that their

method does not require labelled anomalies and the GNNs can capture rich information

in the attributed networks, resulting in strong performance on benchmark datasets. The

method proposed by Liu et al. [47] in their paper “Anomaly Detection on Attributed Net-

25

works via Contrastive Self-Supervised Learning” is particularly relevant to our work as it

is centred around the construction of node pairs and distinguishing between matching and

mismatching pairs. This technique allows them to capture the relationship between each

node and its neighbours in an unsupervised fashion. While their experimental setup does

not include spatio-temporal graphs, they show promising results and strong performance

on benchmarks.

4.3 Proposed research direction

From the previously discussed works from the field of anomaly detection on dynamic

graphs, it is clear that the ideas and methods could be highly applicable to the problem

of detection of adversarial communication in cooperative MARL scenarios. Therefore, our

proposed research direction is to combine the detection methods used for anomaly detec-

tion in temporal graphs, in order to detect the intrinsic temporal discrepancies between

cooperative and adversarial communication and thus detect and filter the messages from

non-cooperative and adversarial agents. Our approach is tangential to the previously dis-

cussed work in the field and can be used concurrently with other methods for detection

and filtering of adversarial communication, which rely only on spatial information.

4.3.1 Method

We propose a novel method for filtering adversarial communication based on anomaly

detection on temporal graphs. We utilise the anomaly detection work done by Yuan et

al. [48] and Cai et al. [49] in order to train an anomaly detection model on the commu-

nication graphs of the cooperative agents. The agents then use this model to monitor

the environment for anomalous nodes during deployment, allowing them to detect and

suppress the communication from nodes that exhibit unusual temporal characteristics.

The way in which we apply this method to MARL tasks is explained further during the

experiments in Chapter 6.

4.3.2 Limitations

We assume that there is a way to identify agents and track them over consecutive time

steps in order to be able to build temporal graphs that represent the evolution of the

system over time. In our experimental setup we will use the unique identifiers that are

provided by the training environment in order to track the agents. In practical scenarios,

where such identifiers might not be readily available, this assumption can be satisfied by

using the previously discussed methods of agent fingerprinting [37, 38].

4.3.3 Hypotheses

We formulate as hypotheses the main challenges that we will investigate in our work.

26

H1 Faulty agents produce messages that are not spatiotemporally coherent. Assuming

that we have agents with faulty sensors, which produce invalid reading at random

intervals, we hypothesise that such agents will produce messages that will not be

coherent over consecutive time steps and their communication will be measurably

different from normal communication.

H2 Self-interested, disruptive and malicious agents produce messages that do not ex-

hibit the same spatio-temporal characteristics as genuine messages. We believe that

such agents would be able to produce spatiotemporally coherent messages, in order

to avoid simple methods of detection, however, we also believe that the temporal

characteristics of such communication would be measurably different from those of

normal, cooperative communication.

H3 Methods for anomaly detection on temporal graphs can detect the spatio-temporal

discrepancies between fabricated and genuine messages. We hypothesise that it

will be possible to train anomaly detection model on messages from cooperative

communication channels, during training, and use them in order to detect messages

from adversarial agents during deployment.

H4 Anomaly detection scores can be used to suppress malicious communication and

reduce its impact on cooperative systems. Using the confidence scores from the

trained anomaly detection model, we believe that it will be possible to consistently

filter adversarial messages and thus increase the performance of the cooperative

system.

H5 Malicious agents trained with full knowledge of the detection algorithm will try to

produce messages that closely resemble the spatio-temporal characteristics of gen-

uine messages and will suffer performance reductions. In particular, we believe

that there will be an inverse correlation between the spatio-temporal coherence of

adversarial messages and their effectiveness in terms of manipulating cooperative

agents.

H6 Temporal based anomaly detection message filtering will be effective even in en-

vironments where adversarial agents are dominant. We believe that the method

of filtering adversarial communication using anomaly detection models, trained on

temporal graphs, will be scalable to environments with more than one adversarial

agent and even to environments in which the adversarial agents are in the majority.

4.3.4 Contributions

The novel contribution of our work is fourfold.

C1 We proposed a novel method for detecting and filtering adversarial communication,

based on anomaly detection on temporal graphs. Our method differs from prior

works that rely only on information from a single time step by analysing the natural

27

evolution of the graphs and the spatio-temporal coherence of the agent observations

between consecutive time steps.

C2 We develop a framework based on BenchMARL [50], which is the first framework

designed specifically for training adversarial scenarios in multi-agent reinforcement

learning, in which the agents use communication in order to cooperate. This software

engineering contribution is the backbone of our research experiments and provides

a framework for creating reliable and reproducible experiments, enabling further

research in the area. The reproducibility information can be found in Appendix C.

C3 We conduct experiments on complex scenarios that have continuous-space environ-

ments and are unsolvable without agent communication. This is in contrast to most

of the scenarios considered by prior works in which many of the scenarios have

discrete action-spaces and it is possible to solve them without any form of commu-

nication, albeit more inefficiently. We do this by adapting the existing Discovery

scenario from the VMAS framework [51] and by creating a novel scenario named

VIP.

C4 We conduct experiments involving different types of adversarial agents, from naive

faulty agents to agents with full knowledge of the defence strategies and we also

conduct experiments with multiple adversarial agents. While having only a single

adversarial agent is a reasonable starting point, it is not clear if methods evaluated

under this condition would scale well. For example, we hypothesise that having

only a single adversarial agent makes it easier to detect, as it is the only agent

that behaves differently than all other agents. Furthermore, having only a single

adversarial agent in the environment does not allow for the emergence of more

complex scenarios, such as adversarial cooperation.

28

Chapter 5

Design and implementation

In this chapter we explain the design and implementation of the different components

from our experimental setup. We also discuss the design, implementation and motivation

behind the software framework that we have developed to allow us to perform our scientific

experiments.

5.1 Model

The main building block of all of the models that we train is a message passing GNN.

We have used a standard message passing GNN implementation from BenchMARL [50]

as the starting point and have adapted it to our use case. We have implemented a

custom adversarial GNN model that has been used for all of our experiments and has

been carefully designed to be both cross compatible with existing frameworks and also

to provide a good starting point for future work in the field of adversarial MARL. The

adversarial GNN model contains multiple MPGNN sub-models which are configurable in

order to allow for the training on adversarial scenarios. The model has three modes of

operation: cooperative training mode, adversarial training mode and detection training

mode. In the cooperative training mode, the cooperative sub-model is trained as a regular

MPGNN and allows the agents to learn cooperative policies. Traditional MARL model

implementations support the training of either fully homogeneous or fully heterogeneous

agents, but in our model, we have also added support for training heterogeneous groups

of homogeneous agents, e.g. training one group of agents in which all share the same

policy and another group of agents in which all share a different policy. In the case of het-

erogeneous agents only, a single MPGNN is trained, for heterogeneous agents, MPGNNs

equal to the number of agents are trained and in the case of heterogeneous groups, one

MPGNN is trained for each group. In the adversarial training mode, the model keeps the

cooperative sub-model frozen, making sure that none of the cooperative MPGNNs are

trained further while it trains a model for the adversarial agents that dictates both their

actions and the messages that they transmit. Finally, in the detection training mode, the

29

model keeps both the cooperative and the adversarial sub-models frozen and trains an

anomaly detection sub-model that is used to detect and filter adversarial communication.

The adversarial model that we have implemented is fully configurable and is thus capa-

ble of training any of the sub-models further. For example, the omniscient agent type

defined in Section 5.2 is trained by first training the whole model, including the anomaly

detection sub-model and then resuming the training of the adversarial agents to give them

full knowledge of the detection mechanism. Furthermore, the full model and any of the

sub-models are capable of being partially or fully initialised with pre-trained MPGNN

models, allowing for pausing and resuming of the training. We have implemented this

with cross-compatibility in mind, allowing for policies trained using the base MPGNN

implementation from BenchMARL to be reused.

5.2 Agent types

Cooperative agent - This is the standard type of agent producing messages based on

genuine observations.

Faulty agent - This type of agent does not have a particular goal of either reducing the

performance of the cooperative system or increasing its own reward. Instead, it has faulty

sensors which produce incorrect observation at each time step t. As the faulty agent is

simply an agent with sensors that are faulty, it has the same reward as all of the other

cooperative agents.

Self-interested agent - This agent does not actively seek to reduce the performance of

the system and is instead only interested in obtaining a high reward for itself. The agent

learns to produce messages that differ from its actual observation in order to manipulate

the cooperative agents and achieve its own goal. The reward of the self-interested agent

is the same as the reward of the cooperative agents. This agent is trained independently

of the cooperative agents in order to learn how to manipulate them and obtain higher

rewards compared to the average cooperative agent.

Disruptive agent - The reward of this agent is the inverse of the sum of the rewards

of all cooperative agents. In other words the goal of this agent is to strictly reduce the

performance of the cooperative system without even attempting to achieve the objective

of the given task.

Malicious agent - The goal of this type of agent is to reduce the performance of the

cooperative agents while simultaneously increasing its own performance. This agent will

actively seek to disrupt the cooperative behaviour of the other agents by transmitting

adversarial messages to them and manipulating their actions. The reward of the malicious

agent is the sum of its own individual reward, achieved on the task, minus the rewards of

the cooperative agents.

30

Omniscient agent - This type of agent is an extension of the malicious agent that has

full knowledge of the detection mechanism for falsified messages. In our experiments,

the omniscient agents’ policies are trained for further episodes with the message filtering

methods enabled, in order to give them the chance to learn how to avoid detection. As

the omniscient agent type is just an extension of the previously defined malicious agent

type, with the addition of the knowledge about the detection mechanism, this agent’s

reward is the same as the reward of the malicious agent.

5.3 Scenarios

5.3.1 Discovery

The first task we use in our experimental setup is a modified version of the Discovery

task from VMAS [51]. The environment of the Discovery task contains agents and targets

which can be captured. The environment has continuous action space, however, messages

between agents are transmitted simultaneously, at fixed intervals. A visual representation

of the scenario with annotations is shown in Figure 5.1.

Target

Target radius

Agent

LIDAR Sensors

Figure 5.1: Visualisation of the Discovery scenario with annotations explaining the dif-
ferent components.

Agents

The environment contains holonomic agents which are equipped with l LIDAR sensors

with range sr. The agents are circular and the sensors are distributed evenly around

the agents’ circumferences, with the number of sensors being a configurable parameter.

The sensors are configured to be able to detect only the targets in the environment and

are not capable of detecting other agents. The implication of this imposed limitation is

that the agents are not capable of finding each other using their own sensors and thus

communication is necessary in order for the agents to be able to solve the task. While

31

not strictly part of the environment itself, each agent has a communication range cr,

which determines the maximum distance at which the agent can send communication

messages. This means that in order for two agents to exchange messages, they should

be at a distance less than cr of each other. The agents have collision enabled between

themselves, the boundaries of the environment and the targets. However, there are no

penalties for the agents, associated with collisions. In all of our experiments, we use the

same number of sensors and the same values for the sensor range sr, for all agents in the

environment.

Targets

The environment contains static targets that can be captured by the agents. Each target

has a capture radius r around it and a minimum number of capturing agents n are required

in order to capture it. More specifically, in order for a target to be captured, exactly n

agents must be at a distance smaller than r from the target, or in other words, n agents

must be present in the circle, with centre equal to the location of the target and radius

r. When a target is captured, an equal reward is given to each capturing agent and the

target is repositioned to a new random location in the environment. In our experiments

we use the same values for r and n for all targets in the environment.

Objectives

The objective of the agents in the Discovery scenario is to maximise the number of targets

that they capture. Because each target requires at least n agents in order to be captured,

the agents are incentivised to form groups and work together. However, because only the

first n agents that get into the capture radius of the target receive a reward, the agents are

disincentivised to form groups that are too large. Furthermore, the most efficient strategy

for agent groups is to explore different parts of the environment, instead of competing

against each other in a single section, as this reduces their chances of capturing the

maximum number of targets. One major challenge to achieving cooperation is the fact

that the agents cannot detect each other using their sensors. This means that the agents

can achieve their goals only by communicating with each other.

5.3.2 VIP

The second task that we use in our experimental setup is a completely new task that we

have developed for VMAS named VIP. The task contains two different types of cooperative

agents, VIP agents and regular agents. The environment also contains VIP targets that

can be captured only by the VIP agents, as well as moving projectiles that are targeting the

VIP agents and can be prevented from reaching their targets only by the regular agents.

This is a cooperative task with heterogeneous agents, due to the fact that the VIP and

regular agents are able to observe different parts of the environment and have different

32

objectives. This has been a deliberate design choice and more thorough justification of

the reasons behind this choice is provided in Chapter 6. Similarly to the Discovery task,

the VIP task also has continuous action space and the messages between the agents are

once again transmitted at fixed intervals, meaning that the communication occurs in

discrete time intervals. A visual representation of the scenario with annotations is shown

in Figure 5.2.

Projectile

VIP Target

Regular Agent

VIP Agent

LIDAR Sensors

Figure 5.2: Visualisation of the VIP scenario with annotations explaining the different
components.

Agents

Both the VIP agents and the regular agents are holonomic agents, that are equipped with

LIDAR sensors. The range and the number of LIDAR sensors for each agent group is

independently configurable with lvip and lreg, representing the number of LIDAR sensors

for the VIP agent group and the regular agent group, respectively, and svipr and sregr

representing the sensor range for each group. The LIDAR sensors of the VIP agents are

capable of detecting the VIP targets in the environment that can only be captured by the

VIP agents, whereas the regular agents are capable of detecting only the projectiles in the

environment. Both the VIP agent and the regular agents can collide with the projectiles

and both agent groups have configurable maximum velocity defined by vvip and vreg. None

of the agents in the environment are capable of observing each other directly and thus

have to rely on communication in order to achieve their cooperative goals. Similarly to

the LIDAR sensors, the communication range of agents in a specific group is the same

between all agents in the group, with the VIP agents having communication radius defined

by cvipr and the regular agents having communication radius defined by cregr .

Projectiles

The projectiles in the environment are spawned randomly on the perimeter of a circle with

radius pr, with the origin of the circle being the current position of the VIP agent. The

33

length of the spawning radius is controlled by a hyperparameter. The projectiles move

towards the VIP agent with maximum velocity pv, taking the Euclidean shortest path.

This behaviour is deterministic and is not part of the learning process. The projectiles

can collide with both the VIP agents and the regular agents but pass through the VIP

targets. Their goal is to collide with the VIP agent, but can be stopped by regular

agents. When a projectile gets close to any agent, the projectile is removed and a new

one is spawned at the perimeter of the circle surrounding the VIP agent. Projectiles

colliding with VIP agents add a penalty to it of prvip, whereas regular agents that stop a

projectile receive a reward of prreg = dist(ppos/vippos) for neutralising them, where dist(·)
is a function that calculates the euclidean distance between two points, ppos is the position

of the neutralised projectile and vippos is the position of the VIP agent. In other words

the regular agents receive higher rewards for projectiles that are neutralised further away

from the VIP agent and lower rewards for projectiles that are neutralised closer to the

VIP agent, proportionate to the distance between the two.

VIP targets

Similarly to the projectiles, the VIP targets are also spawned randomly in a circle around

the VIP agent with the spawn circle having radius ts. The VIP targets can only be

captured by the VIP agents and every other entity in the environment passes through

them. The targets are static and provide a fixed reward tr to all agents in the environment

when captured by a VIP agent. This means that all regular agents will receive the same

reward when a target is captured, incentivising the regular agents to collaborate with the

VIP agents in order to help them capture the targets. After a target is captured, a new

one is spawned at random in a circle around the current position of the VIP agent.

Objectives

As previously explained, the VIP task features heterogeneous agent groups, with each

of them having slightly different objective. The objective of the VIP agent is to avoid

being hit by the projectiles and to collect as many of the VIP targets as possible. When

the VIP agent is hit by a projectile, both its and all other regular agents’ rewards in the

environment receive a penalty. Similarly, whenever the VIP agent collects a VIP target, it

receives a reward along with all other regular agents. Given that the VIP agent’s reward

and penalties are shared with the regular agents, the first goal of the regular agents is

to protect the VIP agent and to help it capture the VIP targets. The regular agents are

further incentivised to neutralise the projectiles by receiving individual rewards for each

projectile that they successfully neutralise. In contrast with the rewards and penalties

from the VIP agent, the reward for neutralising a projectile is given only to the agent

that neutralises it and is proportional to the distance between the projectile and the VIP

agent. It is important to note that neither the VIP agent, nor the regular agents can

detect each other. This means that the only way for the regular agents to be able to

34

protect the VIP agent and to collaborate with each other is to rely on the communication

between them.

5.3.3 Adversarial framework implementation

While BenchMARL provides support for extending the base framework with custom

models and tasks, it is insufficient for the purposes of our experimental adversarial se-

tups, due to its technical limitations. The main limitation that we have encountered

is the lack of a standardised approach to enabling inter-agent communication. In addi-

tion, due to underlying limitations of TorchRL and functorch [52], it was necessary

to make modifications to the libraries in order to be able to construct proximity-based

communication graphs between the agents. Furthermore, we have made modifications

to VMAS in order to better visualise the adversarial agents and to instantiate scenarios

using adversarial agents in a more accessible way.

Because of that, we have grouped the previously discussed components into a new frame-

work, designed specifically for training adversarial MARL scenarios and running experi-

ments on them. The framework acts as an extension to both BenchMARL and VMAS

and includes the following sub-modules.

Adversarial GNN

The sub-module contains a PyTorch [53] model for training adversarial agents. As

previously discussed this is implemented as an extension to the MPGNN model and is

highly configurable, enabling the different types of training required for the experimental

setups. The model has been implemented as an extension of the abstract BenchMARL

Model and can be used as a drop-in replacement for models in any existing BenchMARL

experiments.

Adversarial agents

A sub-module that contains reward transforms, based on the TorchRL Transform class,

which correspond to the different agent types. Each of the agent types described previ-

ously is implemented using different reward transforms, which are applied to the raw

agent rewards returned by the environment. This allows us to dynamically change the

agent types without having to make direct changes to the underlying scenarios.

Adversarial scenarios

This sub-module contains two VMAS based custom scenarios with added support for

adversarial agents. It contains the adapted Discovery scenario and the newly developed

VIP scenario. The sub-module also serves as a general template for creating further

adversarial scenarios for VMAS.

35

Additional changes

This sub-module contains changes to the core RL libraries that underpin our experimen-

tal work that enables them to work in complex scenarios with dynamic communication

graphs. While the original MPGNN model has been used in BenchMARL for train-

ing on MARL problems with agent-to-agent communication, it has been used only with

fully connected communication graphs, which have been handcrafted and do not take the

agents’ position into account. To our knowledge, there are no publicly available examples

for BenchMARL that are capable of running MARL experiments with agent-to-agent

communication using dynamically created communication graphs, based on the physical

positions of the agents in the environment and the communication range between them.

In order to achieve this, we have implemented a procedure for creating the communication

graphs using the library PyTorch Geometric [54]. On each step of the training, the

library allows us to provide the list of agents and the maximum communication range and

it returns the corresponding communication graph.

This required changes in the TorchRL [55] and functorch libraries, due to low level

optimisations preventing the creation of the communication graphs. More specifically,

the creation of the graphs rely on the use of a masking operation, which is not supported

by the vectorised mapping that is performed during the TorchRL’s training procedure.

This is due to the fact that the vectorised mapping procedure produces BatchedTensors,

which as the name suggests, support only batch operations, making it impossible to get

individual items, or subsets of items from them, or do operations that change their size

dynamically. Because the creation of the communication graphs relies on dynamically

resizing the underlying tensors, it is not directly compatible with TorchRL and we had

to modify its internal training logic to sidestep the tensor vectorisation during graph

construction. A more detailed explanation of the problem can be found in the project

issues page of functorch: https://github.com/pytorch/functorch/issues/256.

As a final change, we have also implemented custom wrappers around the anomaly detec-

tion models that we have used from the library PyGOD [56]. This is a necessary change

in order to create a general interface for supplying the data from the communication of

the cooperative agents to the training method of the anomaly detection model. It also

adds the ability to dynamically enable and disable the anomaly detection based filtering,

for cases such as the training of the omniscient agents.

36

https://github.com/pytorch/functorch/issues/256

Chapter 6

Experiments and results

In this chapter we describe the experiments that we have conducted in order to test our

hypotheses and evaluate our novel method for detection and suppression of untruthful

communication.

6.1 Discovery scenario

For our first set of experiments, we use the previously described Discovery task. We start

by training a group of 5 cooperative agents, with all agents having equal communication

and LIDAR sensor radius of 0.35. The environment contains 10 targets that are placed

randomly and requires 2 agents per target, in order to capture them. Each agent has

its own reward, per episode, based on the number of targets that it has captured and

there are no shared rewards. The cooperative agents learn homogeneous policies using

the previously described GNN model and use the proximal-policy optimisation algorithm,

with the loss for each agent being based on its own personal reward. The cooperative

system is trained for 1000 episodes, with the total reward per episode being shown in Fig-

ure 6.1. A visualisation of the cooperative behaviour of the trained agents is also available

in Appendix A.2.1. The full list of hyperparameters used for the scenarios, the training

procedure and all other configurable parts of the experimental setups is shown in Ta-

ble B.1.

The trained cooperative agents exhibit an interesting emergent behaviour. Due to their

inability to observe each other directly, while simultaneously needing to be in groups of at

least two in order to capture the targets in the environment, the agents learn to navigate

to the corners of the environment, in search of other agents, and once another agent gets

into their communication range, they start exploring the environment together.

37

0 200 400 600 800 1000

Episode

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

R
ew

ar
d

Figure 6.1: The total reward per episode of the cooperative model on the Discovery task.

6.1.1 First hypothesis

In order to test our first hypothesis, we introduce a faulty agent into the system, initialise

its policy using the trained cooperative policy and further train the agent for 100 episodes.

During the training, we keep the cooperative policy frozen, preventing the cooperative

agents’ policy from adapting to the faulty agent. We expect that the faulty agent will

slightly reduce the performance of the cooperative system as its observations might mis-

lead the cooperative agents, leading to inefficient actions. The influence of the faulty

agent is visualised in Figure 6.2. We can see that the faulty agent does not affect the

performance of the cooperative system drastically, which is in line with our expectations,

as it is not actively malicious.

In order to compare the temporal coherence of the communication between the agents, we

collect messages from the cooperative agents and from the faulty agent, over consecutive

time steps, and perform statistical analysis by comparing the auto-correlation and entropy

for each group of messages. We use the auto-correlation function from the software library

NumPy [57] and Bubble entropy [58] from the library EntropyHub [59]. The results are

shown in Table 6.1. We observe that the messages produced by cooperative agents achieve

Auto-correlation Entropy
Cooperative messages 0.9312± 0.0867 0.0107± 0.0154
Faulty messages 0.4694± 0.0387 0.5018± 0.0418

Table 6.1: Comparison between the auto-correlation and entropy coefficients for cooper-
ative and faulty messages on the Discovery task.

38

0 20 40 60 80 100

Episode

0

5

10

15

20

R
ew

ar
d

Coop reward

Faulty reward

Figure 6.2: Comparison between the cooperative agents’ reward and the reward of the
faulty agent on the Discovery task.

a much higher auto-correlation score and a much lower entropy score, compared to the

faulty messages. This is expected due to the inherent randomness of the faulty messages

and supports our hypothesis that the faulty messages are not temporally coherent and

are measurably different from cooperative communication.

6.1.2 Second hypothesis

For our second hypothesis, we perform similar experiments to our first one, but instead of

training a faulty agent, we train a self-interested agent, a disruptive agent and a malicious

agent, one per each experiment, respectively. We introduce each agent type in the trained

cooperative environment, containing the five cooperative agents. Once again, the policy

of each of the non-cooperative agents is initialised using the trained cooperative policy

and is further trained for 100 episodes. A visualisation of the learned behaviour for the

different agent types can be seen in Appendix A.

It is interesting to see the difference between the behaviour of the different agent types.

The self-interested agent learns to stay in the centre of the environment, collecting as many

targets as possible with the help of other cooperative agents. The disruptive agent learns

to lead cooperative agents towards the corners of the environment and tries to prevent

them from exploring. The malicious agent does a combination of both and it stays in the

middle to collect targets, but it also influences some of the incoming cooperative agents

to navigate towards the corners of the environment.

39

This corresponds with our expectations based on their reward functions and is further

confirmed by the results shown in Figure 6.3, which show the individual reward of each

agent type and the effect that the agent has on the cooperative reward. We see that

in the case of the self-interested agent, both the self-interested agent’s reward and the

cooperative reward increase. This is due to the fact that the self-interested agent captures

0 20 40 60 80

Episode

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
ew

a
rd

Coop reward

Self-interested reward

(a) Self-interested

0 20 40 60 80

Episode

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
ew

a
rd

Coop reward

Disruptive reward

(b) Disruptive

0 20 40 60 80

Episode

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
ew

ar
d

Coop reward

Malicious reward

(c) Malicious

Figure 6.3: Comparison between the total cooperative reward and adversarial agent re-
wards for different types of adversarial agents on the Discovery task.

targets with the help of the cooperative agents, thus increasing their overall reward too.

In the case of the disruptive agent, we observe that it achieves lower reward compared

to the other agent types and also its behaviour causes the cooperative reward to decline.

Finally, similarly to the visual observations of their behaviour, the malicious agent strikes

a balance between the other two agent types, by increasing its own reward, while keeping

the cooperative reward relatively steady.

In order to test our hypothesis, we collect messages over consecutive time steps from each

agent type and once again calculate their auto-correlation and entropy coefficients. The

data of this experiment is summarised in Table 6.2. We observe that both the auto-

correlation and the entropy coefficient of the different non-cooperative agent types are

40

Auto-correlation Entropy
Cooperative messages 0.9312± 0.0867 0.0107± 0.0154
Self-interested messages 0.7589± 0.0727 0.1152± 0.0193
Disruptive messages 0.8446± 0.0676 0.1510± 0.0346
Malicious messages 0.7877± 0.1425 0.0769± 0.0130

Table 6.2: Comparison between the auto-correlation and entropy coefficients for different
types of agents on the Discovery task.

much closer to those of the cooperative agents, compared to the ones from the faulty agent

type. This supports our hypothesis that the messages produced by the non-cooperative

agents are spatio-temporally coherent, while also showing that their characteristics are

not strictly the same as the ones of the messages produced by cooperative communication.

6.1.3 Third hypothesis

In order to test our third hypothesis, we train a graph anomaly detection model on the

communication graphs of the cooperative agents and then use the trained model to score

the nodes of communication graphs, containing both cooperative and non-cooperative

nodes. This is done in order to simulate a real world scenarios in which we have not

previously observed any non-cooperative communication and cannot use such information

to make our cooperative system more robust. We have presented the anomaly detection

scores of the agents, in each one of the experimental environments, in Table 6.3.

Coop Agent 1 Coop Agent 2 Coop Agent 3 Coop Agent 4 Coop Agent 5 Adversarial Agent
Faulty 1.5090± 0.0201 1.5125± 0.0166 1.5095± 0.0287 1.5112± 0.0190 1.5099± 0.0229 1.2468± 0.0552
Self-interested 1.0062± 0.0207 1.0103± 0.0185 1.0063± 0.0220 1.0093± 0.0196 1.0113± 0.0163 0.7070± 0.0131
Disruptive 1.0893± 0.0237 1.0932± 0.0160 1.0925± 0.0204 1.0906± 0.0212 1.0937± 0.0190 0.8288± 0.0178
Malicious 1.0057± 0.0210 1.0101± 0.0183 1.0059± 0.0227 1.0095± 0.0195 1.0109± 0.0163 0.6999± 0.0207

Table 6.3: Anomaly detection scores for experiments with different adversarial agent types
on the Discovery task.

As expected, all of the cooperative agents, in each of the environments, achieve a similar

score relative to each other. In contrast, the scores obtained by the non-cooperative

agents diverge from the rest. This supports our hypothesis and allows us to use the

scores, in order to distinguish between the agent types and as a consequence, suppress

the communication of the anomalous agents.

6.1.4 Fourth hypothesis

We devise a communication suppression scheme based on the anomalous score by filter-

ing all messages that lay outside of a specific threshold. More specifically, we filter all

communication from agents that have an anomalous score one standard deviation away

from the mean of all agents’ scores.

41

We implement this strategy into our experimental setups and perform further rollouts to

collect data about the performance of the system, both with and without filtering enabled.

The system performance for the different experiments is summarised in Table 6.4, while

a visualisation of the suppression scheme in action can be seen in Appendix A.1.5.

Cooperative reward Adversarial reward
With filtering Without filtering With filtering Without filtering

Faulty 17.73± 01.14 16.57± 01.14 05.78± 01.20 05.90± 00.92
Self-interested 17.91± 01.32 18.50± 00.97 05.37± 00.75 09.48± 01.62
Disruptive 14.20± 00.98 14.17± 00.94 07.36± 00.93 07.63± 01.28
Malicious 17.06± 01.68 17.77± 01.70 06.35± 01.15 07.33± 01.32

Table 6.4: System performance comparison for experiments with different adversarial
agent types on the Discovery task.

Looking at the data, we observe that in the experiment with the faulty agent, our sup-

pression method reduces the performance of the faulty agent and allows the cooperative

agents to increase theirs. This suggests that the method is capable of filtering the mis-

leading information from the faulty agent, allowing the cooperative agents to work more

effectively without confusion. In the case of the self-interested agent, we observe that both

the cooperative reward and the reward of the self-interested agent are reduced. This is in

line with our previous observations that the two rewards are correlated and suggests that

the message filtering strategy is effective. In the case of the disruptive agents, we observe

that while the suppression strategy still achieves its goal of reducing the performance of

the disruptive agent and increasing the performance of the cooperative agents, the effect

is much more subtle. Finally, the malicious agent also suffers a reduction of its reward,

while the cooperative agents are able to increase theirs. Overall, the results show that our

proposed algorithm is capable of detection and suppression of adversarial communication

for all of the different types of agents.

6.1.5 Fifth hypothesis

For the fifth hypothesis, we keep the previously created suppression system enabled and

further train the malicious agent for another 100 episodes. This gives the malicious agent

full knowledge of the detection system and allows it to learn how to avoid being detected

by it. As previously discussed, we refer to this type of agents as omniscient agents.

A visualisation of the behaviour of the omniscient agent can be seen in Appendix A.1.6.

We observe that even with message filtering enabled, agents that are in the communication

range of the omniscient agent are interacting with it. This suggests that the agent has been

able to learn how to avoid detection, in order to not have his communication suppressed.

In order to test our hypothesis, we first collect messages from the communication of the

omniscient agent and once again calculate the auto-correlation and entropy coefficients.

42

We show a comparison between the auto-correlation and entropy coefficients for cooper-

ative, malicious and omniscient agents in Table 6.5. Looking at the data, we can confirm

that the statistics of the communication of the omniscient agent, more closely resemble

those of the cooperative communication, compared to the statistics of the messages pro-

duced by the malicious agent. These observations support the first part of our hypothesis.

Auto-correlation Entropy
Cooperative messages 0.9312± 0.0867 0.0107± 0.0154
Malicious messages 0.7877± 0.1425 0.0769± 0.0130
Omniscient messages 0.8213± 0.0614 0.0758± 0.0146

Table 6.5: Comparison between the auto-correlation and entropy coefficients for cooper-
ative, malicious and omniscient agents on the Discovery task.

For the second part, we freeze the policy of the omniscient agent, preventing it from

adapting further and perform additional rollouts to collect data about the performance

of the system with and without the message filtering. In Table 6.6, we compare the

performance between rollouts with an omniscient agent with filtering enabled, a malicious

agent with filtering enabled and a malicious agent with filtering disabled.

Cooperative reward Adversarial reward
Omniscient w/ filtering 16.15± 00.94 06.48± 01.06
Malicious w/ filtering 17.06± 01.68 06.35± 01.15
Malicious w/o filtering 17.77± 01.70 07.33± 01.32

Table 6.6: System performance comparison between omniscient and malicious agents on
the Discovery task.

From the data, we observe that the omniscient agent achieves higher, reward compared to

the malicious agent, in the case in which the anomaly detection based filtering is enabled.

However, as expected, it is not capable of achieving the performance of the malicious

agent, in the environment without adversarial filtering. Despite that, it is capable of

reducing the cooperative reward further, even with the message filtering. This is most

likely caused by false-positive results, generated by the anomaly detection model, which

creates message suppression that is too aggressive.

6.1.6 Sixth hypothesis

In order to test our final hypothesis, we introduce multiple adversarial agents in the

environment. We have chosen the malicious agent type for all adversarial agents and all

of them share a homogeneous policy, which is the same as the policy of the previously

trained malicious agent. Despite the fact that our framework has been implemented with

support for adversarial agent collaboration, we assume that all adversarial agents act

independently and do not consider the case in which they can work together as a group

43

in order to achieve more complex deception strategies, as this is out of the scope of the

current work.

We consider two different cases, one in which the adversarial agents are still a minority

(3 agents) in the environment, and another, in which the adversarial agents are in the

majority (6 agents). Similarly to the previous experiments, we perform additional rollouts

to collect data about the performance of the system with and without filtering enabled.

We present our results in Table 6.7.

Cooperative reward Adversarial reward
With filtering Without filtering With filtering Without filtering

3 Adversaries 14.71± 00.67 17.92± 00.97 08.57± 01.13 11.02± 01.13
6 Adversaries 10.99± 01.19 15.31± 01.06 12.72± 00.64 11.41± 00.40

Table 6.7: System performance comparison between experiments with different number
of adversarial agents on the Discovery task.

For the case with 3 malicious agents, we observe that the message filtering system is capa-

ble of suppressing the adversarial communication and the performance of the adversarial

agents is lower when it is enabled. We further note that performance of the cooperative

system is also reduced while the filtering is enabled. This is most likely caused by both

false positives, generated by the filtering system and also because the adversarial agents

work together with the cooperative agents in order to capture targets and the filtering

system limits these interactions.

In the case with the majority of agents being malicious, we observe that the suppression

system is not capable of reducing the performance of the adversarial agents. In fact we

observe an increase of the adversarial performance. This is likely caused by the fact

that the system is producing more false positives and is suppressing genuine cooperative

communication, as evidenced by the fact that the cooperative performance is reduced

when the filtering is enabled. This data contradicts the second part of our hypothesis and

shows that while our novel method can handle cases with multiple adversarial agents, it

is not capable of handling cases in which the majority of the agents are adversarial.

6.2 VIP scenario

We perform our second set of experiments under the newly developed VIP environment.

This environment has been specifically designed with the goal of having cooperative agents

that are heterogeneous, in order to test the performance of our proposed algorithm under

more challenging conditions. The agent heterogeneity comes from the fact that the VIP

agent has different reward and different sensors, compared to regular agents. Furthermore,

the differences in their sensors, coupled with the differences in their overall goals, mean

that they will likely learn different communication strategies. We speculate that this will

make the anomaly detection more challenging.

44

We start by training a single VIP agent and 3 regular agents. The VIP agent has LI-

DAR sensors with range 1.0 and the regular agents have sensors with range 0.65. Both

types of agents have an equal communication radius of 0.65. We train the agents in an

environment containing 4 VIP targets and 5 projectiles placed randomly. The full list of

hyperparameters for our experiment is shown in Table B.2.

Similarly to the previous scenario, we train the cooperative policies for 1000 episodes and

the total reward per episode is shown in Figure 6.4, with a visualisation of the agents

behaviour shown in Appendix A.2.1. We observe that the VIP agent learns to collect the

0 200 400 600 800 1000

Episode

−50

0

50

100

150

R
ew

ar
d

Figure 6.4: The total reward per episode of the cooperative model on the VIP task.

VIP targets, while the regular agents learn to spread out in different directions in order

to protect the VIP agent from the incoming projectiles.

Using this setup, we are now going to perform the same experiments as the ones done for

the Discovery scenario. In order to avoid repetition, we will only highlight the differences

in our experimental setups; anything that is not explicitly mentioned has been performed

using the same steps and hyperparameters as in the corresponding Discovery experiments.

6.2.1 First hypothesis

For our first hypothesis, we observe similar results to the ones on the previous task. We

show the performance of the cooperative system in the presence of a single faulty agent

in Figure 6.5 and observe that it does not affect the system performance drastically, as

it is not actively malicious. Likewise, the comparison between the auto-correlation and

entropy coefficients, shown in Table 6.8, between the cooperative communication and the

45

0 20 40 60 80 100

Episode

40

60

80

100

120

140

R
ew

ar
d

Coop reward

Faulty reward

Figure 6.5: Comparison between the cooperative agents’ reward and the reward of the
faulty agent on the VIP task.

faulty communication, reflects our previous findings. The faulty agent produces messages

that are not temporally coherent and are measurably different from both the messages

produced by the VIP agent and the message produced by the regular agents.

Auto-correlation Entropy
VIP messages 0.9474± 0.1019 0.0513± 0.1082
Regular messages 0.9816± 0.0532 0.0478± 0.1052
Faulty messages −0.0115± 0.1284 0.5150± 0.0396

Table 6.8: Comparison between the auto-correlation and entropy coefficients for VIP,
regular and faulty messages on the VIP task.

6.2.2 Second hypothesis

For the second hypothesis, we do the same training as we did for the Discovery scenario

and visualise the learned behaviour of the agents in Appendix A. We observe that the self-

interested agent learns to stop as many projectiles as possible, as this leads to obtaining a

higher reward. It also disregards the strategy of the cooperative agents to spread around

the environment to protect the VIP agent and instead competes with the cooperative

agents to stop the projectiles. In contrast, the disruptive agent learns to instead avoid

the projectiles so that they can hit the VIP agent and reduce the performance of the

system. Finally, we observe that the malicious agent learns to collect projectiles, but also

to influence the cooperative agents to move away from it, allowing it to decide between

letting projectiles hit the VIP agent or collecting them.

46

Calculating the auto-correlation and the entropy of the messages of the different agents

once again shows that the non-cooperative agents produce messages that exhibit spatio-

temporal characteristics that are closer to the cooperative messages, compared to the

messages produced by the faulty agent. The results are shown in Table 6.9 and support

our hypothesis.

Auto-correlation Entropy
VIP messages 0.9474± 0.1019 0.0513± 0.1082
Regular messages 0.9816± 0.0532 0.0478± 0.1052
Self-interested messages 0.7212± 0.1321 0.3411± 0.0334
Disruptive messages 0.8007± 0.0681 0.3093± 0.0419
Malicious messages 0.8013± 0.1017 0.2773± 0.0651

Table 6.9: Comparison between the auto-correlation and entropy coefficients for different
types of agents on the VIP task.

6.2.3 Third hypothesis

We compare the anomaly scores between the agents in this scenario in Table 6.10 and

confirm our speculation that the anomaly scores between heterogeneous agents would

be different. More specifically, we observe that the anomaly detection model produces

VIP Agent Regular Agent 1 Regular Agent 2 Regular Agent 3 Adversarial Agent
Faulty 1.8381± 0.0487 1.2552± 0.0098 1.2547± 0.0108 1.2548± 0.0106 0.7474± 0.0836
Self-interested 2.2398± 0.0576 1.6592± 0.0142 1.6586± 0.0178 1.6584± 0.0164 1.1819± 0.0141
Disruptive 2.2448± 0.0575 1.6637± 0.0166 1.6655± 0.0147 1.6656± 0.0165 1.1507± 0.0165
Malicious 2.2351± 0.0563 1.6534± 0.0158 1.6533± 0.0187 1.6528± 0.0173 1.1808± 0.0205

Table 6.10: Anomaly detection scores for experiments with different adversarial agent
types on the VIP task.

measurably different scores for the VIP and the regular agents. While this is not ideal

for the purposes of suppressing adversarial communication only, it is still possible to

distinguish between the cooperative and the non-cooperative agents, thus we continue

with our experiments.

6.2.4 Fourth and Fifth hypotheses

Implementing the same message suppression strategy as for the Discovery task, we observe

that the filtering is effective in reducing the performance of the faulty, the self-interested

and the disruptive agent types, as shown in Table 6.11. However, it is not effective in

reducing the performance of the malicious agent type and the aggressive message filtering

also negatively affect the performance of the cooperative agents. These mixed results

show us that the basic filtration strategy is not capable of handling complex heterogeneous

systems and that in the future, more robust approaches to setting the threshold for the

anomalous score based filtering should be explored. Unsurprisingly, the omniscient agent

47

Cooperative reward Adversarial reward
With filtering Without filtering With filtering Without filtering

Faulty 118.81± 7.19 126.03± 5.56 62.78± 13.99 68.79± 09.92
Self-interested 119.33± 7.95 132.96± 6.25 60.94± 13.33 81.50± 10.12
Disruptive 117.81± 7.26 131.14± 5.74 53.60± 14.79 85.43± 05.73
Malicious 139.56± 9.27 129.68± 5.72 81.64± 13.90 48.09± 11.41

Table 6.11: System performance comparison for experiments with different adversarial
agent types on the VIP task.

type, which is based on the malicious agent type, also does not suffer a great performance

reduction, as shown by the results in Table 6.12.

Cooperative reward Adversarial reward
Omniscient w/ filtering 148.70± 6.13 82.90± 6.93
Malicious w/ filtering 139.56± 9.27 81.64± 13.90
Malicious w/o filtering 129.68± 5.88 48.09± 11.72

Table 6.12: System performance comparison between omniscient and malicious agents on
the VIP task.

6.2.5 Sixth hypothesis

Finally, we conduct two experiments on theVIP scenario with 2 and 4 adversarial agents,

respectively. The results shown in Table 6.13 are in line with the results on the Discovery

scenario that we observed. Our adversarial message suppression approach is capable of

Cooperative reward Adversarial reward
With filtering Without filtering With filtering Without filtering

2 Adversaries 151.70± 07.24 126.50± 8.55 74.98± 8.51 −16.95± 15.64
4 Adversaries 109.90± 14.84 115.86± 15.03 −97.12± 16.66 −92.11± 17.52

Table 6.13: System performance comparison between experiments with different number
of adversarial agents on the VIP task.

suppressing the malicious communication from multiple adversaries, however it is not

capable of sustaining attacks in which the adversaries are in the majority.

48

Chapter 7

Conclusions and future work

In conclusion, we have presented and systematically tested six different hypotheses, based

around the idea of using temporal information from agents’ messages in MARL problems

with agent-to-agent communication, in order to expose temporal discrepancies and use

them for detection and suppression of adversarial communication. We have shown that

the communication created by faulty agents is not temporarily coherent and that the

communication by different types of adversarial agents does not exhibit the same spatio-

temporal characteristics as genuine messages. We have then used that information and

have cross-pollinated our ideas with ideas from the field of anomaly detection on temporal

and attributed graphs, in order to develop a novel method for detection and suppression

of adversarial communication. Finally, we have demonstrated and discussed the strengths

and weaknesses of our proposed method by evaluating it on two custom MARL scenarios,

with both different number and different types of adversarial agents.

As part of the future work in the field, it would be interesting to see more research in the

effectiveness of methods based on temporal data, for MARL systems with large number

of heterogeneous and nonholonomic agents. Furthermore, we believe that a cross between

spatial based and temporal based methods for detection and suppression of adversarial

communication will yield more robust defence systems that will be able to sustain more

sophisticated attacks. Finally, it would also be interesting to explore the correlation

between the effectiveness of adversarial messages and their detection resistance in a more

rigorous manner, with the aim of establishing theoretical guarantees for the maximum

disruptiveness that specific communication can have on MARL systems. This can enable

the derivation of a common metric for classifying the capabilities of methods for detection

and suppression of adversarial communication. Such metrics can be beneficial in high-

risk environments for guaranteeing an appropriate level of safety, in accordance with

regulations, and can also help establish trust in the reliability and soundness of MARL

systems.

49

Bibliography

[1] D. Hildreth and S. J. Guy, “Coordinating Multi-Agent Navigation by Learning

Communication,” Proceedings of the ACM on Computer Graphics and Interactive

Techniques, vol. 2, no. 2, pp. 20:1–20:17, Jul. 2019. [Online]. Available:

https://doi.org/10.1145/3340261

[2] I. Kajić, E. Aygün, and D. Precup, “Learning to cooperate: Emergent

communication in multi-agent navigation,” Jun. 2020, arXiv:2004.01097 [cs, stat].

[Online]. Available: http://arxiv.org/abs/2004.01097

[3] L. Busoniu, R. Babuska, and B. De Schutter, “A Comprehensive Survey

of Multiagent Reinforcement Learning,” IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews), vol. 38, no. 2, pp.

156–172, Mar. 2008, conference Name: IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews). [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/4445757

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning, second edition: An Introduc-

tion. MIT Press, Nov. 2018, google-Books-ID: uWV0DwAAQBAJ.

[5] K. Zhang, Z. Yang, and T. Başar, “Multi-Agent Reinforcement Learning: A

Selective Overview of Theories and Algorithms,” in Handbook of Reinforcement

Learning and Control, K. G. Vamvoudakis, Y. Wan, F. L. Lewis, and D. Cansever,

Eds. Cham: Springer International Publishing, 2021, pp. 321–384. [Online].

Available: https://doi.org/10.1007/978-3-030-60990-0 12

[6] J. Hu and M. P. Wellman, “Multiagent Reinforcement Learning: Theoretical Frame-

work and an Algorithm,” in Proceedings of the Fifteenth International Conference

on Machine Learning, ser. ICML ’98. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., Jul. 1998, pp. 242–250.

[7] A. G. Barto, “Reinforcement learning and dynamic programming,” in Analysis,

Design and Evaluation of Man–Machine Systems 1995, ser. IFAC Postprint Volume,

T. B. Sheridan, Ed. Oxford: Pergamon, Jan. 1995, pp. 407–412. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/B9780080423708500100

50

https://doi.org/10.1145/3340261
http://arxiv.org/abs/2004.01097
https://ieeexplore.ieee.org/abstract/document/4445757
https://doi.org/10.1007/978-3-030-60990-0_12
https://www.sciencedirect.com/science/article/pii/B9780080423708500100

[8] A. Lazaric, M. Restelli, and A. Bonarini, “Reinforcement Learning in Continuous

Action Spaces through Sequential Monte Carlo Methods,” in Advances in

Neural Information Processing Systems, vol. 20. Curran Associates, Inc., 2007.

[Online]. Available: https://proceedings.neurips.cc/paper files/paper/2007/hash/

0f840be9b8db4d3fbd5ba2ce59211f55-Abstract.html

[9] F. Tan, P. Yan, and X. Guan, “Deep Reinforcement Learning: From Q-Learning to

Deep Q-Learning,” in Neural Information Processing, D. Liu, S. Xie, Y. Li, D. Zhao,

and E.-S. M. El-Alfy, Eds. Cham: Springer International Publishing, 2017, pp.

475–483.

[10] I. Grondman, L. Busoniu, G. A. D. Lopes, and R. Babuska, “A Survey of

Actor-Critic Reinforcement Learning: Standard and Natural Policy Gradients,”

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), vol. 42, no. 6, pp. 1291–1307, Nov. 2012, conference Name: IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[Online]. Available: https://ieeexplore.ieee.org/abstract/document/6392457

[11] OpenAI, C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison,

D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson,

J. Pachocki, M. Petrov, H. P. d. O. Pinto, J. Raiman, T. Salimans, J. Schlatter,

J. Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski, and S. Zhang, “Dota 2 with

Large Scale Deep Reinforcement Learning,” Dec. 2019, arXiv:1912.06680 [cs, stat].

[Online]. Available: http://arxiv.org/abs/1912.06680

[12] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,

and M. Hutter, “Learning agile and dynamic motor skills for legged robots,”

Science Robotics, vol. 4, no. 26, p. eaau5872, Jan. 2019, publisher: American

Association for the Advancement of Science. [Online]. Available: https:

//www.science.org/doi/full/10.1126/scirobotics.aau5872

[13] X. Wang and T. Sandholm, “Reinforcement Learning to Play an Optimal Nash

Equilibrium in Team Markov Games,” in Advances in Neural Information Processing

Systems, vol. 15. MIT Press, 2002. [Online]. Available: https://proceedings.neurips.

cc/paper files/paper/2002/hash/f8e59f4b2fe7c5705bf878bbd494ccdf-Abstract.html

[14] J. Dowling, R. Cunningham, A. Harrington, E. Curran, and V. Cahill, “Emergent

Consensus in Decentralised Systems Using Collaborative Reinforcement Learning,”

in Self-star Properties in Complex Information Systems, O. Babaoglu, M. Jelasity,

A. Montresor, C. Fetzer, S. Leonardi, A. van Moorsel, and M. van Steen, Eds. Berlin,

Heidelberg: Springer, 2005, pp. 63–80.

[15] C. Chen, H. Wei, N. Xu, G. Zheng, M. Yang, Y. Xiong, K. Xu, and Z. Li,

“Toward A Thousand Lights: Decentralized Deep Reinforcement Learning for

Large-Scale Traffic Signal Control,” Proceedings of the AAAI Conference on

51

https://proceedings.neurips.cc/paper_files/paper/2007/hash/0f840be9b8db4d3fbd5ba2ce59211f55-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2007/hash/0f840be9b8db4d3fbd5ba2ce59211f55-Abstract.html
https://ieeexplore.ieee.org/abstract/document/6392457
http://arxiv.org/abs/1912.06680
https://www.science.org/doi/full/10.1126/scirobotics.aau5872
https://www.science.org/doi/full/10.1126/scirobotics.aau5872
https://proceedings.neurips.cc/paper_files/paper/2002/hash/f8e59f4b2fe7c5705bf878bbd494ccdf-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2002/hash/f8e59f4b2fe7c5705bf878bbd494ccdf-Abstract.html

Artificial Intelligence, vol. 34, no. 04, pp. 3414–3421, Apr. 2020, number: 04.

[Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/5744

[16] S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian, “Deep

Decentralized Multi-task Multi-Agent Reinforcement Learning under Partial

Observability,” in Proceedings of the 34th International Conference on Machine

Learning. PMLR, Jul. 2017, pp. 2681–2690, iSSN: 2640-3498. [Online]. Available:

https://proceedings.mlr.press/v70/omidshafiei17a.html

[17] J. Hu and M. P. Wellman, “Nash q-learning for general-sum stochastic games,” The

Journal of Machine Learning Research, vol. 4, no. null, pp. 1039–1069, Dec. 2003.

[18] F. A. Oliehoek and C. Amato, A Concise Introduction to Decentralized POMDPs,

1st ed. Springer Publishing Company, Incorporated, May 2016.

[19] C. Zhu, M. Dastani, and S. Wang, “A survey of multi-agent deep reinforcement

learning with communication,” Autonomous Agents and Multi-Agent Systems,

vol. 38, no. 1, p. 4, Jan. 2024. [Online]. Available: https://doi.org/10.1007/

s10458-023-09633-6

[20] H. Min, Y. Fang, X. Wu, X. Lei, S. Chen, R. Teixeira, B. Zhu, X. Zhao, and Z. Xu,

“A fault diagnosis framework for autonomous vehicles with sensor self-diagnosis,”

Expert Systems with Applications, vol. 224, p. 120002, Aug. 2023. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0957417423005043

[21] J. Dong, S. Wu, M. Soltani, and V. Tarokh, “Multi-Agent Adversarial Attacks for

Multi-Channel Communications,” in Proceedings of the 21st International Confer-

ence on Autonomous Agents and Multiagent Systems, ser. AAMAS ’22. Richland,

SC: International Foundation for Autonomous Agents and Multiagent Systems, May

2022, pp. 1580–1582.

[22] W. Xue, W. Qiu, B. An, Z. Rabinovich, S. Obraztsova, and C. K. Yeo, “Mis-

spoke or mis-lead: Achieving Robustness in Multi-Agent Communicative Reinforce-

ment Learning,” in Proceedings of the 21st International Conference on Autonomous

Agents and Multiagent Systems, ser. AAMAS ’22. Richland, SC: International Foun-

dation for Autonomous Agents and Multiagent Systems, May 2022, pp. 1418–1426.

[23] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,

“Graph neural networks: A review of methods and applications,” AI Open, vol. 1,

pp. 57–81, Jan. 2020. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S2666651021000012

[24] P. Almasan, J. Suárez-Varela, K. Rusek, P. Barlet-Ros, and A. Cabellos-Aparicio,

“Deep reinforcement learning meets graph neural networks: Exploring a routing

optimization use case,” Computer Communications, vol. 196, pp. 184–194,

52

https://ojs.aaai.org/index.php/AAAI/article/view/5744
https://proceedings.mlr.press/v70/omidshafiei17a.html
https://doi.org/10.1007/s10458-023-09633-6
https://doi.org/10.1007/s10458-023-09633-6
https://www.sciencedirect.com/science/article/pii/S0957417423005043
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://www.sciencedirect.com/science/article/pii/S2666651021000012

Dec. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0140366422003784

[25] V. Konda and J. Tsitsiklis, “Actor-Critic Algorithms,” in Advances

in Neural Information Processing Systems, vol. 12. MIT Press,

1999. [Online]. Available: https://proceedings.neurips.cc/paper/1999/hash/

6449f44a102fde848669bdd9eb6b76fa-Abstract.html

[26] C. C.-Y. Hsu, C. Mendler-Dünner, and M. Hardt, “Revisiting Design Choices in

Proximal Policy Optimization,” Sep. 2020, arXiv:2009.10897 [cs, stat]. [Online].

Available: http://arxiv.org/abs/2009.10897

[27] M. S. Holubar and M. A. Wiering, “Continuous-action Reinforcement Learning for

Playing Racing Games: Comparing SPG to PPO,” Jan. 2020, arXiv:2001.05270 [cs,

stat]. [Online]. Available: http://arxiv.org/abs/2001.05270

[28] J. G. Kuba, R. Chen, M. Wen, Y. Wen, F. Sun, J. Wang, and Y. Yang, “Trust

Region Policy Optimisation in Multi-Agent Reinforcement Learning,” Apr. 2022,

arXiv:2109.11251 [cs]. [Online]. Available: http://arxiv.org/abs/2109.11251

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy

Optimization Algorithms,” Aug. 2017, arXiv:1707.06347 [cs]. [Online]. Available:

http://arxiv.org/abs/1707.06347

[30] C. S. de Witt, T. Gupta, D. Makoviichuk, V. Makoviychuk, P. H. S. Torr,

M. Sun, and S. Whiteson, “Is Independent Learning All You Need in the StarCraft

Multi-Agent Challenge?” Nov. 2020, arXiv:2011.09533 [cs]. [Online]. Available:

http://arxiv.org/abs/2011.09533

[31] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu, “The

Surprising Effectiveness of PPO in Cooperative Multi-Agent Games,” Advances

in Neural Information Processing Systems, vol. 35, pp. 24 611–24 624, Dec. 2022.

[Online]. Available: https://proceedings.neurips.cc/paper files/paper/2022/hash/

9c1535a02f0ce079433344e14d910597-Abstract-Datasets and Benchmarks.html

[32] J. Tu, T. Wang, J. Wang, S. Manivasagam, M. Ren, and R. Urtasun, “Adversarial

Attacks On Multi-Agent Communication,” Oct. 2021, arXiv:2101.06560 [cs].

[Online]. Available: http://arxiv.org/abs/2101.06560

[33] J. Blumenkamp and A. Prorok, “The Emergence of Adversarial Communication

in Multi-Agent Reinforcement Learning,” in Proceedings of the 2020 Conference

on Robot Learning. PMLR, Oct. 2021, pp. 1394–1414, iSSN: 2640-3498. [Online].

Available: https://proceedings.mlr.press/v155/blumenkamp21a.html

[34] R. Mitchell, J. Blumenkamp, and A. Prorok, “Gaussian Process Based

Message Filtering for Robust Multi-Agent Cooperation in the Presence of

53

https://www.sciencedirect.com/science/article/pii/S0140366422003784
https://www.sciencedirect.com/science/article/pii/S0140366422003784
https://proceedings.neurips.cc/paper/1999/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://proceedings.neurips.cc/paper/1999/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
http://arxiv.org/abs/2009.10897
http://arxiv.org/abs/2001.05270
http://arxiv.org/abs/2109.11251
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2011.09533
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9c1535a02f0ce079433344e14d910597-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9c1535a02f0ce079433344e14d910597-Abstract-Datasets_and_Benchmarks.html
http://arxiv.org/abs/2101.06560
https://proceedings.mlr.press/v155/blumenkamp21a.html

Adversarial Communication,” Dec. 2020, arXiv:2012.00508 [cs]. [Online]. Available:

http://arxiv.org/abs/2012.00508

[35] L. Yuan, T. Jiang, L. Li, F. Chen, Z. Zhang, and Y. Yu, “Robust cooperative

multi-agent reinforcement learning via multi-view message certification,” Science

China Information Sciences, vol. 67, no. 4, p. 142102, Mar. 2024. [Online]. Available:

https://doi.org/10.1007/s11432-023-3853-y

[36] Y. Sun, R. Zheng, P. Hassanzadeh, Y. Liang, S. Feizi, S. Ganesh, and

F. Huang, “Certifiably Robust Policy Learning against Adversarial Communication

in Multi-agent Systems,” Jul. 2022, arXiv:2206.10158 [cs]. [Online]. Available:

http://arxiv.org/abs/2206.10158

[37] S. Gil, S. Kumar, M. Mazumder, D. Katabi, and D. Rus, “Guaranteeing spoof-

resilient multi-robot networks,” Autonomous Robots, vol. 41, no. 6, pp. 1383–1400,

Aug. 2017. [Online]. Available: https://doi.org/10.1007/s10514-017-9621-5

[38] V. Renganathan and T. Summers, “Spoof resilient coordination for distributed

multi-robot systems,” in 2017 International Symposium on Multi-Robot and

Multi-Agent Systems (MRS), Dec. 2017, pp. 135–141. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/8250942

[39] M. Porter, S. Dey, A. Joshi, P. Hespanhol, A. Aswani, M. Johnson-Roberson, and

R. Vasudevan, “Detecting Deception Attacks on Autonomous Vehicles via Linear

Time-Varying Dynamic Watermarking,” in 2020 IEEE Conference on Control

Technology and Applications (CCTA), Aug. 2020, pp. 1–8. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/9206278

[40] X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and

L. Akoglu, “A Comprehensive Survey on Graph Anomaly Detection With

Deep Learning,” IEEE Transactions on Knowledge and Data Engineering,

vol. 35, no. 12, pp. 12 012–12 038, Dec. 2023, conference Name: IEEE

Transactions on Knowledge and Data Engineering. [Online]. Available: https:

//ieeexplore.ieee.org/abstract/document/9565320

[41] Y. Kim, Y. Lee, M. Choe, S. Oh, and Y. Lee, “Temporal Graph Networks for Graph

Anomaly Detection in Financial Networks,” Mar. 2024, arXiv:2404.00060 [cs, q-fin].

[Online]. Available: http://arxiv.org/abs/2404.00060

[42] D. Savage, X. Zhang, X. Yu, P. Chou, and Q. Wang, “Anomaly detection in online

social networks,” Social Networks, vol. 39, pp. 62–70, Oct. 2014. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0378873314000331

[43] H. Zhang, S. Zhao, R. Liu, W. Wang, Y. Hong, and R. Hu, “Automatic

Traffic Anomaly Detection on the Road Network with Spatial-Temporal Graph

Neural Network Representation Learning,” Wireless Communications and Mobile

54

http://arxiv.org/abs/2012.00508
https://doi.org/10.1007/s11432-023-3853-y
http://arxiv.org/abs/2206.10158
https://doi.org/10.1007/s10514-017-9621-5
https://ieeexplore.ieee.org/abstract/document/8250942
https://ieeexplore.ieee.org/abstract/document/9206278
https://ieeexplore.ieee.org/abstract/document/9565320
https://ieeexplore.ieee.org/abstract/document/9565320
http://arxiv.org/abs/2404.00060
https://www.sciencedirect.com/science/article/pii/S0378873314000331

Computing, vol. 2022, p. e4222827, Jun. 2022, publisher: Hindawi. [Online].

Available: https://www.hindawi.com/journals/wcmc/2022/4222827/

[44] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and

description: a survey,” Data Mining and Knowledge Discovery, vol. 29, no. 3, pp.

626–688, May 2015. [Online]. Available: https://doi.org/10.1007/s10618-014-0365-y

[45] J. Li, H. Dani, X. Hu, and H. Liu, “Radar: Residual Analysis for Anomaly

Detection in Attributed Networks,” in Proceedings of the Twenty-Sixth International

Joint Conference on Artificial Intelligence. Melbourne, Australia: International

Joint Conferences on Artificial Intelligence Organization, Aug. 2017, pp. 2152–2158.

[Online]. Available: https://www.ijcai.org/proceedings/2017/299

[46] X. Wang, B. Jin, Y. Du, P. Cui, Y. Tan, and Y. Yang, “One-class graph neural

networks for anomaly detection in attributed networks,” Neural Computing and

Applications, vol. 33, no. 18, pp. 12 073–12 085, Sep. 2021. [Online]. Available:

https://doi.org/10.1007/s00521-021-05924-9

[47] Y. Liu, Z. Li, S. Pan, C. Gong, C. Zhou, and G. Karypis, “Anomaly Detection on

Attributed Networks via Contrastive Self-Supervised Learning,” IEEE Transactions

on Neural Networks and Learning Systems, vol. 33, no. 6, pp. 2378–2392, Jun. 2022,

conference Name: IEEE Transactions on Neural Networks and Learning Systems.

[Online]. Available: https://ieeexplore.ieee.org/abstract/document/9395172

[48] X. Yuan, N. Zhou, S. Yu, H. Huang, Z. Chen, and F. Xia, “Higher-order Structure

Based Anomaly Detection on Attributed Networks,” in 2021 IEEE International

Conference on Big Data (Big Data), Dec. 2021, pp. 2691–2700. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/9671990

[49] L. Cai, Z. Chen, C. Luo, J. Gui, J. Ni, D. Li, and H. Chen, “Structural

Temporal Graph Neural Networks for Anomaly Detection in Dynamic Graphs,”

in Proceedings of the 30th ACM International Conference on Information &

Knowledge Management, ser. CIKM ’21. New York, NY, USA: Association

for Computing Machinery, Oct. 2021, pp. 3747–3756. [Online]. Available:

https://doi.org/10.1145/3459637.3481955

[50] M. Bettini, A. Prorok, and V. Moens, “BenchMARL: Benchmarking Multi-Agent

Reinforcement Learning,” Dec. 2023, arXiv:2312.01472 [cs]. [Online]. Available:

http://arxiv.org/abs/2312.01472

[51] M. Bettini, R. Kortvelesy, J. Blumenkamp, and A. Prorok, “VMAS: A Vectorized

Multi-agent Simulator for Collective Robot Learning,” in Distributed Autonomous

Robotic Systems, J. Bourgeois, J. Paik, B. Piranda, J. Werfel, S. Hauert, A. Pierson,

H. Hamann, T. L. Lam, F. Matsuno, N. Mehr, and A. Makhoul, Eds. Cham:

Springer Nature Switzerland, 2024, pp. 42–56.

55

https://www.hindawi.com/journals/wcmc/2022/4222827/
https://doi.org/10.1007/s10618-014-0365-y
https://www.ijcai.org/proceedings/2017/299
https://doi.org/10.1007/s00521-021-05924-9
https://ieeexplore.ieee.org/abstract/document/9395172
https://ieeexplore.ieee.org/abstract/document/9671990
https://doi.org/10.1145/3459637.3481955
http://arxiv.org/abs/2312.01472

[52] R. Z. Horace He, “functorch: JAX-like composable function transforms for

PyTorch,” 2021. [Online]. Available: https://github.com/pytorch/functorch

[53] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,

“PyTorch: An Imperative Style, High-Performance Deep Learning Library,” in

Advances in Neural Information Processing Systems, vol. 32. Curran Associates,

Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/hash/

bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[54] M. Fey and J. E. Lenssen, “Fast Graph Representation Learning with

PyTorch Geometric,” Apr. 2019, arXiv:1903.02428 [cs, stat]. [Online]. Available:

http://arxiv.org/abs/1903.02428

[55] A. Bou, M. Bettini, S. Dittert, V. Kumar, S. Sodhani, X. Yang, G. De Fabritiis, and

V. Moens, “TorchRL: A data-driven decision-making library for PyTorch,” Nov.

2023, arXiv:2306.00577 [cs]. [Online]. Available: http://arxiv.org/abs/2306.00577

[56] K. Liu, Y. Dou, X. Ding, X. Hu, R. Zhang, H. Peng, L. Sun, and P. S. Yu, “PyGOD:

A Python Library for Graph Outlier Detection,” Mar. 2024, arXiv:2204.12095 [cs].

[Online]. Available: http://arxiv.org/abs/2204.12095

[57] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,

D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus,

S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Ŕıo, M. Wiebe,

P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi,

C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature,

vol. 585, no. 7825, pp. 357–362, Sep. 2020, publisher: Nature Publishing Group.

[Online]. Available: https://www.nature.com/articles/s41586-020-2649-2

[58] G. Manis, M. Aktaruzzaman, and R. Sassi, “Bubble Entropy: An Entropy Almost

Free of Parameters,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 11,

pp. 2711–2718, Nov. 2017, conference Name: IEEE Transactions on Biomedical

Engineering. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/

7842617

[59] M. W. Flood and B. Grimm, “EntropyHub: An open-source toolkit for

entropic time series analysis,” PLOS ONE, vol. 16, no. 11, p. e0259448,

Nov. 2021, publisher: Public Library of Science. [Online]. Available: https:

//journals.plos.org/plosone/article?id=10.1371/journal.pone.0259448

56

https://github.com/pytorch/functorch
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/2306.00577
http://arxiv.org/abs/2204.12095
https://www.nature.com/articles/s41586-020-2649-2
https://ieeexplore.ieee.org/abstract/document/7842617
https://ieeexplore.ieee.org/abstract/document/7842617
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259448
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259448

Appendix A

Visualisations

We present a number of different visualisations, in the form of short videos, that show-

case the learnt behaviour of the agents during the different experiments that we have

conducted. The aim of these videos is to supplement our explanation of the different sce-

narios and agent behaviours, clear any ambiguities and hopefully aid in the understanding

and verifying of our experimental work.

In all of the visualisations, cooperative agents are represented in blue and the VIP agents,

which are used in the VIP scenario, are represented in gold. Agents that are not strictly

cooperative, such as faulty agents and adversarial agents are colour coded in red, as shown

in Figure A.1.

Cooperative Agent

Non-cooperative agent

Figure A.1: Visualisation of cooperative and non-cooperative agent types.

A.1 Discovery scenario

A.1.1 Cooperative agents

https://figshare.com/s/7be437e282ad4d0635d6

57

https://figshare.com/s/7be437e282ad4d0635d6

A.1.2 Self-interested agent

https://figshare.com/s/2f5a9eced42dcea527c8

A.1.3 Disruptive agent

https://figshare.com/s/ceb734d750d3266227ee

A.1.4 Malicious agent

https://figshare.com/s/b6b669c3ad2a41415608

A.1.5 Adversarial message suppression

https://figshare.com/s/0bc757bbfa9bc367163c

A.1.6 Omniscient agent

https://figshare.com/s/8a235bcff8c72b5e127a

A.2 VIP scenario

A.2.1 Cooperative agents

https://figshare.com/s/a3a8e2082a14fe340f46

A.2.2 Self-interested agent

https://figshare.com/s/3ca278d485ce2e8a1b4a

A.2.3 Disruptive agent

https://figshare.com/s/b4bc0b2a7b8f0b8da7d4

A.2.4 Malicious agent

https://figshare.com/s/69383ecab5dc0de914c6

A.2.5 Adversarial message suppression

https://figshare.com/s/843320b8ef48a7de01d6

A.2.6 Omniscient agent

https://figshare.com/s/fecc6c2ce400390034f2

58

https://figshare.com/s/2f5a9eced42dcea527c8
https://figshare.com/s/ceb734d750d3266227ee
https://figshare.com/s/b6b669c3ad2a41415608
https://figshare.com/s/0bc757bbfa9bc367163c
https://figshare.com/s/8a235bcff8c72b5e127a
https://figshare.com/s/a3a8e2082a14fe340f46
https://figshare.com/s/3ca278d485ce2e8a1b4a
https://figshare.com/s/b4bc0b2a7b8f0b8da7d4
https://figshare.com/s/69383ecab5dc0de914c6
https://figshare.com/s/843320b8ef48a7de01d6
https://figshare.com/s/fecc6c2ce400390034f2

Appendix B

Hyperparameters

We have provided summaries of the hyperparameters that we have used during the ex-

perimental setups on the Discovery task in Table B.1 and the ones used for the VIP

task are provided in Table B.2. Additionally, the configuration files used for running all

experiments are submitted along with the source code of the project. The configuration

files contain the full information needed for recreating the experiments presented in our

work.

Hyperparameter Training Model Scenario
gamma 0.99 - -
lr 0.0003 - -
adam eps 0.000001 - -
clip grad val 5 - -
polyak tau 0.005 - -
exploration eps init 0.8 - -
exploration eps end 0.01 - -
exploration anneal frames 1 000 000 - -
num cells - [256, 256] -
activation class - torch.nn.Tanh -
n agents - - 5
n targets - - 10
agents per target - - 2
lidar range - - 0.35
vip n rays - - 15
comms range - - 0.35
max steps - - 200
num envs - - 60
covering rew coeff - - 10
shared reward - - False

Table B.1: Summary of the hyperparameters used for training on the Discovery scenario.

59

Hyperparameter Training Model Scenario
gamma 0.99 - -
lr 0.0003 - -
adam eps 0.000001 - -
clip grad val 5 - -
polyak tau 0.005 - -
exploration eps init 0.8 - -
exploration eps end 0.01 - -
exploration anneal frames 1 000 000 - -
num cells - [256, 256] -
activation class - torch.nn.Tanh \ditto
n agents - - 3
n projectiles - - 5
n vip targets - - 4
vip lidar range - - 1
lidar range - - 0.65
vip n rays - - 15
regular n rays - - 15
comms range - - 0.65
max steps - - 500
num envs - - 60
vip penalty - - -5
projectile speed - - 0.08
vip agent speed - - 0.055
agents speed - - 0.1
vip target radius - - 0.2
projectile radius - - 0.2
projectile max reward - - 10
shared reward - - False

Table B.2: Summary of the hyperparameters used for training on the VIP scenario.

60

Appendix C

Reproducibility

The framework developed for the project and all of the experiment have been built on top

of the BenchMARL framework [50], which is open-source and available on GitHub. All

other 3rd party libraries that have been used throughout the project are also open-source

libraries, the full list of which can be found in the requirements.txt document, located

in the project source code. The source code is provided with full installation instructions,

which can be found in the Readme.md file.

The project has been tested on GNU/Linux running the 6.9.2 kernel and using Python ver-

sion 3.10.14. We have ensured that all sources of randomness in the code (torch.random,

np.random, etc.) have been seeded during the experimental work, in order to make our re-

sults reproducible. All seeds that have been used are provided as part of the experiments’

configuration files in the source code.

61

	Introduction
	Background
	Single-agent reinforcement learning
	Bellman equation
	Policies

	Multi-agent reinforcement learning
	Constraints and variations
	Decision making
	Reward function
	Observability
	Communication

	Related work
	Graph Neural Networks
	Proximal Policy Optimisation
	Independent Proximal Policy Optimisation
	Adversarial attacks on MARL communication
	Detection and suppression of adversarial communication

	Hypotheses and novel contributions
	Motivation
	Anomaly detection in temporal graphs
	Proposed research direction
	Method
	Limitations
	Hypotheses
	Contributions

	Design and implementation
	Model
	Agent types
	Scenarios
	Discovery
	VIP
	Adversarial framework implementation

	Experiments and results
	Discovery scenario
	First hypothesis
	Second hypothesis
	Third hypothesis
	Fourth hypothesis
	Fifth hypothesis
	Sixth hypothesis

	VIP scenario
	First hypothesis
	Second hypothesis
	Third hypothesis
	Fourth and Fifth hypotheses
	Sixth hypothesis

	Conclusions and future work
	Visualisations
	Discovery scenario
	Cooperative agents
	Self-interested agent
	Disruptive agent
	Malicious agent
	Adversarial message suppression
	Omniscient agent

	VIP scenario
	Cooperative agents
	Self-interested agent
	Disruptive agent
	Malicious agent
	Adversarial message suppression
	Omniscient agent

	Hyperparameters
	Reproducibility

