
Customer calls prioritisation

End-Point Project Report

Author: Dobromir Marinov
Degree: BSc Digital and Technology Solutions
Registration Number: 1600802
University Supervisor: Dr Daniel Karapetyan
Second assessor: Dr Nicos Angelopoulos
Company Supervisor: Laurence Smith
Date: August 2019



Abstract

MSX International operates a call centre in Italy on behalf of Ford. Each week the centre
receives a large list of customers that have to be contacted, to try and get them to book an
appointment with an authorised car dealerships in the country. The correct prioritisation
of customers is extremely important to the business, due to the fact that the call centre
contacts only a part of the customers from the list and makes money only on successful
bookings. The project explores the viability of replacing the current legacy prioritisation
system, with a more modern machine learning approach, in order to maximise the number
of successful bookings.
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Chapter 1

Introduction

There are many software systems, still in use today, which are built using methods and
technologies that are outdated. Those systems are known as legacy systems and represent a
major challenge in terms of maintenance and the addition of new features [1]. Furthermore,
the behaviour of some legacy systems is hard-coded; that poses a great opportunity for
optimisation of the systems [2], using smarter methods, such as machine learning.

MSX International operates a call centre in Italy that makes weekly telephone calls to
customers on behalf of car dealerships authorised by Ford. The aim of the calls is to
get customers to book service appointments for their vehicles. A new list of customers is
received approximately once every week and the number of clients to contact is greater
than the total number of calls that the call centre can make per week. Because of that,
the customers on the list are scored, and only the customers with high priority score
are contacted. The prioritisation scoring is done by a static algorithm that uses hard-
coded weights and thresholds for scoring each customer. The values for the weights and
thresholds have been selected by human experts in the domain, using statistical analysis
on the historical data. Once the customers are scored, a priority queue is created; it is
used to assign cases to agents working in the call centre. In addition to the fact that the
call centre is unable to contact all customers from the weekly lists, the number of agents
in the centre is not fixed due to holidays, sickness leaves, etc. and thus the total number
of customers, that can be contacted on any given week, fluctuates.

Because the prioritisation algorithm in the current legacy system is hard-coded and based
on heuristics, it will be interesting to see if machine learning can be applied to the problem
to improve and optimise the performance. In many cases, machine learning models have
been shown to achieve better performance and generalisation that any of the hand made
solutions that human experts can create [3, 4]. One other benefit of machine learning
models is that they can adapt to new data by retraining, making this approach much more
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resilient to change compared to hard-coded systems.

The hypothesis for the project is that there might be a correlation between the likelihood
of booking a service appointment and customer or vehicle specific features. For example,
owners of more expensive vehicles might be more likely to book an appointment, instead of
rescheduling or postponing their service events. Finding such correlation would allow for
the creation of a predictive model that can maximise the number of successful bookings
per week and will consequently increase the revenue of the entire call centre.

1.1 Aims and objectives

The main aim of the project is to build a machine learning system by using the labelled
historical data from previous calls. The new system will then be compared to the legacy
system that is currently being used in terms of performance, maintainability and scalability.
As a secondary aim, feature engineering based on previously unused data will be attempted
to see how newly created features affect the performance and generalisation of the machine
learning model.

The starting objective is to understand the data that will be used for creating the machine
learning model and to analyse it using a variety of statistical methods. This will allow
for the second objective, the data cleaning, to be performed. Once the data is cleaned,
the next objective is to engineer new features for the system. With the features created,
the next step would be to try different machine learning algorithms to create and train a
model. The final objectives of the project will be to validate the model and to optimise
its hyperparameters before comparing its performance to that of the legacy system. One
important step for comparing the systems is to define a performance metric that is capable
of taking into consideration the fluctuation of the number of customers that are contacted
each week.
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Chapter 2

Background

Before discussing the design and implementation of the newly developed machine learn-
ing system, the different phases of a machine learning project should be explained. The
discussion in this chapter will start with the data; it will cover the topics of data analy-
sis, data preparation and feature engineering. It will then continue with an overview of
model training and an in-depth look into the validation and optimisation of models; more
precisely cross validation and hyperparameter optimisation.

2.1 Data analysis and preparation

Data analysis is a multi-step process that is performed in order to gain a better under-
standing of the data that is being used [5]. The process starts with a preliminary data
exploration that allows for the main data errors to be spotted so they can be fixed in
the data cleaning step. It also provides an overview of the data, which is critical for the
understanding of the problem and for the selection of a suitable modelling algorithm [6].

A major step in preparing the data for modelling is data cleaning. Data cleaning is a
process that aims to remove data inconsistencies and errors in order to ensure that a given
dataset follows a formal data specification [7]. Some examples of data cleaning include:
the conversions of date and time to a specific format, measurement conversion, currency
conversion, etc. If a data specification does not exist, it is typically created after the
preliminary data exploration and is used to filter or amend data points that do not conform
to it. The decision whether data points should be deleted or changed is typically dependant
on the specific use case and on the data itself [8]. For example, in many cases it makes
sense to convert fields that contain text to either upper-case or lower-case so that they are
not treated differently. In some cases, it might also make sense to replace an invalid value
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with a value that explicitly shows that it is invalid. For example, if a machine learning
model is being built in order to distinguish fraudulent from benign transactions, a field
that contains an invalid value might be a key indicator for the model; removing such field
or changing its value to match the specification, would most likely result in a decreased
performance. Therefore, data cleaning is a dynamic process that is highly dependent on
the problem that is being solved.

After the data is cleaned, the main data analysis can be conducted. The aim of this step is
to understand the data and to establish the relations between the different fields and data
points. Visual data analysis can be used in order to better understand the datasets [9].
A common approach for studying the strength of the relationships between variables is
the use of correlation analysis [10]. This type of analysis can uncover previously unknown
correlations that can be taken into consideration at the feature engineering phase.

2.2 Feature engineering

Feature engineering is the process of creating features from data. The aim is to create
features that will allow for the training of machine learning models and will improve their
performance [11]. Feature engineering requires domain knowledge and is an essential step
in almost all applied machine learning projects [12]. An example of feature engineering
can be the creation of a new feature that expresses the elapsed time between two dates,
instead of using the raw dates as features.

A good indicator of the quality of newly engineered features is the their importance. Fea-
ture importance is a measurement that quantifies how much a specific feature affects the
performance of a machine learning model [13]. The performance of a machine learning
system is also dependent on the algorithm that will be used for training; some algorithms
can handle correlated features naturally, while for others it might result in significantly
under-performing models [14]. Feature engineering is therefore a non-trivial process, that
plays a big role in the final performance of the machine learning models.

2.3 Modelling

In order to get predictions on new data points, a machine learning model needs to be
created first. The process of creating a model involves the selection of an algorithm which
will be used for training. The training is done on historical data in order to improve the
model’s performance and the data can be either labelled, for supervised learning [15], or
unlabelled, for unsupervised learning [16]. It is also worth mentioning that there is a third
type of learning, reinforcement learning [17], in which an agent learns from its interactions
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with an environment and the feedback that it receives. However, this type of learning is
out of the scope of this project and will not be discussed further.

Before the training can commence, the original dataset is split into testing and training
datasets. The machine learning algorithm has access to both the features and the labels
of the training dataset and uses them to try and learn a function that most optimally
represents the relation between them. The training is an iterative process and aims to
minimise the difference between the predictions and the ground truth. Gradient descent
and variations of it, such as stochastic gradient descent, are the optimisation algorithms
that are most widely used [18]. After the training has completed, the performance of the
machine learning model is evaluated against the test dataset, which contains data points
that have never been seen by the model.

The separation of training and testing datasets and the final evaluation against the testing
dataset are important, due to the fact that machine learning models can overfit. Overfitting
happens when the machine learning model memorises all the samples in the training dataset
and matches them too closely, effectively capturing the noise of the data [19]. The key
giveaway of overfitting is that the model achieves high performance on the training set, but
a low performance on the testing set. On the contrary, underfitting models are characterised
by low performance on both the training and testing datasets which results in models that
do not capture the underlying trend of the data points [20].

It is important to note that there is no single metric for measuring the performance of
machine learning systems. Some metric that are commonly used are mean square error [21]
and area under the receiver operating characteristic curve [22]. However, machine learning
problems can oftentimes require a custom metric to be created, in order to obtain a good
performing model, tailored to the specific problem.

2.4 Cross-validation

As explained previously, the data used for machine learning models needs to be split into
a training set and a testing set and is usually done at random. However, the way in which
the data is split can affect the performance of the final model [23]. For example, in a
multi-class classification problem, a training set that has a balanced representation from
all classes is more likely to result in a better performing model, compared to a training
set that has data points for only one of the classes. In order to eliminate the bias that is
introduced by using a fixed splits and to measure the real performance of the model, the
cross-validation technique is commonly used [24].

The idea behind cross-validation is to train a model on multiple different data splits and
to average the final performances of the models. Each split creates a different training and
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testing datasets and the averaging of the performance over all splits, aims to account for
the data splitting bias explained earlier. Because of that, the cross-validated performance
of a model is a much more realistic measure of the actual performance that the model will
achieve when given an independent dataset. It is worth noting that there are different types
of cross-validation techniques, each of which defines a different way in which the splits are
created [25].

2.5 Hyperparameter optimisation

Hyperparameters are a type of parameters that are selected before the training process be-
gins and they dictate the way in which the training process is executed. Machine learning
models can have anywhere from zero to hundreds of hyperparameters and different combi-
nations of them affect the final performance of the models [26]. Therefore, it is important
to find a hyperparameter combination that results in a high performing model.

The solution to that problem is hyperparameter optimisation; it is a process that aims
to find a set of hyperparameters for a machine learning model with which it achieves the
highest performance and is represented by the equation:

λ∗ = argmax f(λ)
λ∈Λ

, (1)

In equation 1, λ∗ represents the optimal set of hyperparameters; i.e. the set of hyper-
parameters λ, sampled from the full hyperparameter search space Λ, that maximises the
function f(λ). The value of the function f(λ) represents the final performance of a machine
learning model, trained with a hyperparameter set λ [27].

There are different methods for hyperparameter optimisation, but in this project only
grid search and random search will be used, due to their relative simplicity. Both methods
evaluate only a subset of the full hyperparameter search space, because the hyperparameter
search spaces are typically vast and it is unfeasible to do an exhaustive search [28]. The
difference between grid search and random search is in the way in which they choose which
hyperparameter set to evaluate next. For grid search, the hyperparameters are given a set
of values that they can take; afterwards, all combinations between them are tested [29].
On the other hand, random search samples the values for the hyperparameters from the
full search space [30].
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Chapter 3

Product implementation

The development process starts with the raw historical dataset that was provided by the
company and ends with the creation of the final machine learning model, which is fully
optimised and cross-validated. Figure 1 shows an overview of the full project.

Raw dataset Data analysis Data cleaning

Feature engineering

ModellingCross-validation
Hyperparameter

optimisation

Final Model

Figure 1: Project life-cycle diagram.
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In the beginning, a preliminary analysis of the raw dataset is conducted, followed by a data
cleaning procedure. The data analysis and feature engineering are then repeated until a
sufficient number of features are created for training. Using the features, a machine learning
model is trained, validated using cross-validation, and optimised using hyperparameter
optimisation. It is important to note that the cycle of modelling and feature engineering is
typically done multiple times, by gradually adding new features and retraining the system,
in order to evaluate the impact of the new features on the overall performance.

3.1 Dataset overview

The dataset that has been provided for the project contains information about customer
calls made on the behalf of car dealerships, in order to book an appointment with a specific
customer. It is a labelled dataset and contains the outcome of the calls. The raw dataset
contains some additional fields that are recorded by the system, such as the country of the
dealerships, which are not useful in this project as it is only for Italy. All such features have
been excluded from the further discussion, due to their irrelevant nature. An overview of
the fields in the raw dataset can be found in Table 1.

Field Description

ID CUSTOMER CONTACTS Unique identifier of the customer.

NUMBER OF CALLS How many times was the customer called.

EVENT DATE Scheduled visit date.

DEALER CODE Unique identifier of the dealer.

VEHICLE MODEL Model of the vehicle.

VEHICLE REGISTRATION DATE When was the vehicle registered.

MARKETING EVENT The type of the visit (e.g. MOT).

BATCH DATE Date of the record.

DEALER TOWN The town of the dealer.

DEALER POSTCODE The postcode of the dealer.

CUSTOMER TOWN The town of the customer.

CUSTOMER POSTCODE The postcode of the customer.

OUTCOME Outcome of the call.

Table 1: List of all fields from the original dataset and their descriptions that
have been provided for the purposes of the project. Some fields have been
omitted due to their unsuitability for the project.

The dataset contains data points for 2018 and 2019 and the total number of records is
153,419. In addition to the labelled dataset, which contains only customers that have been
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contacted, a dataset has been provided that shows the total number of available customers
to contact per week.

3.2 Preliminary data analysis and cleaning

The initial data analysis was conducted in order to discover all of the inconsistencies in
the original dataset and to fix them. The first major data cleaning work was done on the
dates and on their format. The original dataset contained dates in different formats, with
some of them also containing time. Additionally, the data extract provided was supposed to
contain historical data for 2018 and 2019, but some of the records were from previous years.
In order to clean the dataset, data rows were filtered to remove all data points from earlier
years. In addition, data columns were formatted following the ISO 8601 [31] standard as
‘YYYY-MM-DD’. In addition to invalid dates, some of the records were missing the vehicle
registration date. For such records, the missing vehicle date has been filled with an average
registration date calculated from the full dataset.

The outcomes of the calls have also been normalised. They have been mapped to either
‘successful’ or ‘unsuccessful’, from the original values that they had. The original values had
multiple categories, due to the fact that they included a reason for the customer rejection.
The original categories have been narrowed down only to two, due to the fact that there
already exists a system that deals with customer rejections due to invalid mobile numbers
or similar reasons. In the context of this project, the particular reason for rejection are not
of interest and the data can safely be used for binary classification.

The main software tools that were used for data cleaning and exploration in this project
were Pandas [32] and Matplotlib [33]; they are third party libraries for the programming
language Python. Matplotlib is an open source, visualisation library that has been used
in order to create plots and graphs for visual analysis in the project. It has been used to
produce histograms, bar charts and scatter plots, in order to compare and contrast different
values from the dataset. It is extremely customisable and allows for consistent styles to be
defined and used for the creation of wide variety of plots. Pandas is also an open source
library. It is used for handling large datasets using optimised data structures. The library
is capable of working directly with CSV files, both reading and writing, and can be easily
used for splitting datasets into training and testing subsets. Additionally, it can apply
functions iteratively to multiple elements in both rows and columns of the original dataset.
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3.3 Feature engineering

The first step in creating features for the machine learning algorithms, was to use the data
from all of the date columns. They were transformed to columns that contain the days
since the original dates. It was also experimented with encoding the elapsed time in months
and years.

The region and macro region of Italy, in which the customers were living, were also added
as features. A data file was created to map the different postcodes in Italy to the different
regions and macro regions in the country, in order to create those features.

A major challenge was to normalise the vehicle models. The original data has been taken
from free-text fields and contained different representations for vehicles of the same model.
It also contained abbreviations and typographical errors. In order to make them usable
for machine learning, they were matched to all known vehicle models of the manufacturer,
using fuzzy matching techniques [34]. A threshold of 75% was set and all vehicle models
that were at least 75% similar to one of the known vehicle models, were mapped to it. If
the vehicle model was not similar to any of the known vehicle models, it was mapped to
the ‘other’ category.

The previously mentioned features, the regions and the vehicle model, plus additional
features, such as the marketing event, needed to be transformed into numerical values.
This was important, because most of the machine learning algorithms are unable to handle
text data and require all such fields to be numerically encoded. Initial experiments were
done with one-hot encoding [35], but it was later replaced with encoding based on James-
Stein estimator [36], in order to obtain better performance. For a given categorical feature,
James-Stein encoding calculates the mean of all target values for features in the same
category and the mean of the target values of the whole dataset. It then sums the two
mean values, in order to produce the numerical representation of the categorical feature.
For example, if we want to encode the marketing event for MOT with a James-Stein
encoder, we would have to calculate the mean of the target values (the outcomes of the
calls) for all data points which have MOT as their marketing event. We would then need to
calculate the mean value of the target values for all data points and add the two numbers
together.

The final step of the feature engineering process was to use the postcodes of both the
customers and the dealers and to calculate the driving distances in meters between them.
In order to do that, the postcodes were first used to find the coordinates of the dealers
and customers using an open source geocoding tool; the coordinates were then passed to
a routing engine, which calculated the driving distance, using data from an open source
map.

The software tools that are used for feature engineering in the project include a Python
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library called FuzzyWuzzy [37] and two open source tools called OSRM [38] and Nomi-
natim [39]. FuzzyWuzzy is used for measuring the difference between text strings, using
Levenshtein distance [40]. It calculates a similarity index between 0 and 100 that represents
how similar the text strings are. A threshold can then be selected, for example 70%, and all
strings that have a higher similarity than the threshold can be grouped together. Nomina-
tim is an open source tool for geocoding. It is capable of providing the exact latitude and
longitude of a location, based only on its address or postcode. OSRM is an open source
engine for routing; it can calculate driving distances and find the fastest routes between
map coordinates. It also contains additional services for solving more complex routing
problems, such as the travelling salesman problem [41], however, they have not been used
as part of this project because are out of its scope. Both Nominatim and OSRM are based
on the open source map OpenStreetMap [42] and have been used in the project as services
provided from docker containers running locally. In order to setup the services locally, an
OpenStreetMap data extract, for the country of Italy, was obtained from Geofabrik [43]. It
was then used to initialise a database that is used by the services when an HTTP request
is made to them.

3.4 Modelling

The first machine learning algorithm that was considered was logistic regression [44]. How-
ever, it was very simplistic and prone to underfitting when used for more complex problems.
It was also unable to handle imbalanced datasets.

The second step was to try ensemble methods, such as random forest [45] and gradient
boosting [46]. Both of the algorithms build multiple decision trees, however, gradient
boosting builds them sequentially on the residuals from the previous trees, whereas random
forest builds different trees on different subsets of the original dataset. Because random
forest uses the original dataset for all of its decision trees, it also requires the dataset to be
balanced before training, in order for the final model to be unbiased. In contrast, gradient
boosting can handle slightly imbalanced datasets naturally and can create unbiased models
without the explicit need for balancing the dataset.

The key Python libraries that have been used for training machine learning models were
Scikit-learn [47] and XGBoost [48]. Scikit-learn is an open source library that provides
a large variety of implementations of machine learning algorithms. It has been used ex-
tensively in the training and evaluation of different models, due to its ease of use and
comprehensive documentation. The library XGBoost is a custom implementation of a gra-
dient boosting algorithm. It is used in this project due to the fact that its core is written
in C++, making it faster and more efficient.
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3.5 Validation and optimisation

In order to find the real performance of the trained machine learning system, cross-
validation has been used to remove the data splitting bias. The cross-validation was
performed by splitting the data in 20 subsets, using a stratified K-Fold algorithm [49].
This algorithm ensures that the ratio between the two classes in each of the subsets is the
same as the ratio in the original dataset. Each of the subsets contained 7,571 records, which
is approximately the average size of a weekly batch of customers that is received by the
real system. The final cross-validation score is then calculated as the average of the scores
of the 20 models, evaluated on one of the 20 different subsets and each of them trained on
the remaining 19 subsets. The cross-validation in this project has been implemented using
a sub-module from the Scikit-learn library that provides the logic behind the creation of
the data splits.

The hyperparameter optimisation is done using either grid search or random search. It
is implemented using the parameter grid class from the Scikit-learn library. A method
has been implemented in order to allow the hyperparameter optimisation to be done using
cross-validation with the custom model performance metric. A grid with reasonable values
for the hyperparamters have been created, based on previous experience with the dataset
and the XGBoost machine learning library.

Both the cross-validation and the hyperparameter optimisation are suitable for parallelisa-
tion, because models trained with different hyperparameters or trained on different datasets
are independent. Because of that, both systems have been implemented to run multiple
training procedures in parallel, in order to speed up the process. The number of models
trained simultaneously is equal to the number of available cores on the machine on which
they are trained and is selected dynamically. The Python library Joblib [50], has been used
in order to implement the parallel execution.

3.6 Functional testing and integration

The project contains 84 unit tests that cover 99% of the code that has been written, which
can be found under the test directory in the GitLab repository. They are executed by a
continuous integration system on every commit to the master branch of the repository and
ensure that the behaviour of the code is correct. Another major purpose of the unit tests
is to ensure that new changes do not introduce regression in the system.

The continues integration system uses a YAML file to specify the steps to be executed after
a commit. It always starts in a new environment and pulls the latest version of the project
from the repository. It is then responsible for downloading and installing all dependencies
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of the project, before executing the suite of unit tests. It then reports the result of the
tests and if there is a failure, it also sends an email notification.

The main library used for writing the unit tests is PyUnit [51], with the addition of the
library mock, which comes bundled with PyUnit. It is used extensively for simulating some
of the more expensive calls to other services, such as the geocoding and routing services.
The continuous integration has been implemented on the GitLab platform with their custom
pipelines. It is possible to setup different procedures for continuous integration on different
branches, however this is out of the scope of the current project.
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Chapter 4

System evaluation

The evaluation of the performance of the new system will be split into two parts. The
first part will include a comparison between the importance of the different features that
have been engineered. It will also discuss some of the underlying reasons for the under-
performance of some of the features. The second part, which will be the main part of the
discussion, will explore the overall performance of the final system and will compare it to
the performance of the legacy system.

In order to evaluate the performance of the systems, a custom metric needed to be defined.
The aim of the systems is to maximise the number of successful calls that are made each
week. However, the lists of customers to contact, which are received by the call centre each
week, can be different in size. Furthermore, the number of customers that the call centre
can contact each week is also fluctuating. Because of that, the metric needed to take into
consideration not only the number of successful predicted calls, that resulted in bookings,
but also the probability of contacting different percentages of customers from the full list.
Figure 2 shows the probability of contacting different percentages of the total customers
each week.

The analysis shows that in order to accurately compare the performance of the systems, the
fluctuation of contacted customers needs to be taken into account. For a given percentage
of all customers, the number of true positives (customers that were predicted to make a
booking and resulted in a booking) can be counted, and the probability of contacting that
percentage of customers is also known. The proposed custom metric can then be defined
as the weighted sum of true positives, over different percentages of the data. In practice,
that is implemented as the sum of products, between the number of true positives that the
system predicted in n percent of the customers and the probability of contacting n percent
of the customers.
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Figure 2: Summary of the probabilities of contacting different percentages of
the total customers. The summary has been created based on historical data
from the systems. The high probability of contacting only 10 to 20 percent
of the customers corresponds with the summer and Christmas holidays; the
high probability of contacting between 60 and 65 percent of the customers
corresponds with the periods in which the call centre operates at full capacity.

4.1 Evaluation

The first part of the evaluation process was to take a look into the features that were
engineered. Not all features are equally important to the model, because some of them
contain more information about whether or not a call will result in a booking. Figure 3
shows the importance of the different features that were being used. The distance is the
least important feature and that is due to the fact that it was not available for a large
portion of the data, due to invalid or missing postal codes. It is interesting to see that
the days since the last visit and the marketing event, are key predictors of the success of a
given call. In contrast, the legacy system uses the days since last visit as a key predictor,
but does not give a high importance to the marketing event.
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Figure 3: Features used in the training of the machine learning models, or-
dered in decreasing order of their importance. The importance has been cal-
culated by the XGBoost library while training the models.

For the main evaluation of the new system, 100 runs using different data splits have been
performed. The performance of the system has been evaluated using the custom metric.
The distribution of the performance for all 100 models can be seen in figure 4.
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Figure 4: Distribution of the performance of the new system created by eval-
uating 100 models, trained on different parts of the full dataset. On average,
the model identifies 1,038 customers that will make a booking.
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Despite the changes in the data, the machine learning model can almost always correctly
identify 1,000 of the customers that will be willing to make a booking. For comparison,
the old system can identify only 964, of the total 1,664 client records in a data split, that
will result in a booking.

In the final experiment, the performance of the legacy system and the new system were
evaluated on the same data splits. Their performance was compared over different per-
centages of customers contacted. Figure 5 plots the performance of both systems.
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Figure 5: Comparison between the legacy system and the new system over
different percentages of customers contacted. The diagram shows that the new
system is consistently better than the legacy system, making it more efficient
for the business.

The new machine learning system is clearly outperforming the legacy system over the
full comparison range. On average, it achieves an increase of 49.22 more bookings. It is
important to note that the most of the performance increase is due to the use of machine
learning and more specifically, gradient boosting. The newly engineered features did not
contribute significantly to the performance boost, with two of the top three features, based
on their feature importance, already being present in the legacy system. However, the
increase in performance shows that using machine learning is better suited for the problem
and that employing it will result in benefits for the company.
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Chapter 5

Project planning

The original scope of the project was to develop a new machine learning system for pri-
oritising customer calls, to engineer new features for it using previously unused data and
to compare its performance to the legacy system. It was a preliminary research, with the
aim to provide a proof of concept system, based on machine learning techniques, in order
to evaluate their suitability for solving the business problem.

It was estimated that the project can be completed in two and a half months of full-time
work. In addition, all of the data needed for the project was already available to the
company, making it independent from third-parties. Because the project was part of the
apprenticeship degree program and had to be completed by a single developer, there were
no additional cost in terms of allocating more developers to the project.

5.1 Commercial value

Starting with the performance increase achieved by the newly developed machine learning
system, an average of 49 more bookings will be made per week. The company is paid ap-
proximately 25e per successful call, resulting in approximately 1,225e increase in revenue
per week. Furthermore, the increase in scalability and maintainability introduced by the
new system, will reduce the development and operating costs, resulting in further savings
for the company.
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5.2 Project management tools

The project management tools used for this project were Jira and GitLab. Jira provides
a Kanban board that allows for the creation of tickets that describe the different project
tasks and for the organisation of those tasks into different columns, based on their status.
In the context of this project, three different types of tasks have been used for labelling the
tickets: epic story, task and sub-task. An epic story represents a larger piece of work, with
a scope of approximately 3 weeks. The epic stories were then split into tasks, with each
task representing approximately a week worth of work. The tasks were further split into
sub-tasks that can typically be completed in one to two days. The project contained 3 epic
stories that covered the project initiation, the core system development and improvement
and the project finalisation.

GitLab provides private Git repositories used for version control. A single branch has been
used for the development of the project and only code has been stored in the repository. All
data files have been excluded from version control, due to their large size. Code documenta-
tion, containing instructions for running the project and information about the third-party
dependencies, have been provided in the form of a README file in the repository.

Additional information about the Jira board and the GitLab repository, including links to
them, can be found in appendix A.

5.3 Risk management

One of the most substantial risks for projects with hard deadlines, is project slippage. The
main strategy for mitigating that type of risk was to have regular weekly meetings with
the academic supervisor for the project. In each meeting, the work done up to that point
was discussed and appropriate plan was set for the future. That included the prioritisation
of critical tasks and the resolution of unexpected development problems.

A substantial risk was introduced, due to a change in project priority by MSX Interna-
tional. In the second half of the project, the company decided that they can no longer
provide the initially agreed time investment and the scope of the project had to be reduced
to accommodate the change. The change that the company made, effectively reduced the
development time in half for the second part of the project. This was mitigated by nego-
tiating a reduction of the project scope. The agreement that was accepted by both the
company and the university, was to leave out some of the more in-depth feature engineer-
ing, as part of the future work for the project. The changed allowed for a timely completion
of the other parts of the system.
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Chapter 6

Conclusion

In conclusion, the project has demonstrated the benefits of using a machine learning sys-
tem over the hand-crafted, legacy system. The legacy system has worse performance and
is also difficult to change due to its inability to be retrained and its hard-coded nature. In
comparison, the new machine learning system has shown that it can improve the perfor-
mance of the call centre and as a result, their revenue; it can also be retrained on new data
in less than a day. Additional benefits are the increased maintainability and scalability
that the new system can offer, making it more reliable and future-proof. For example, the
data cleaning and training procedures for the models, support the addition of new features.
Furthermore, because the custom performance metric has been implemented as a separate
component, it is possible to replace it easily, based on the future needs of the company.
The extensive testing will also ensure that no regression is introduced when making new
changes and will support the future development of the project.

6.1 Future work

As part of the future work, it will be interesting to see if additional features can be added
to the machine learning model in order to improve its performance. It will also be useful
to apply more cleaning procedures and to obtain more data from the data warehouse, in
order to try and improve the calculations of the distances between the customers and the
dealers. As part of the deployment process, it will be important to define clear procedures
for deploying the model to the production system and for the retraining of the model with
new data.
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Systems (L. LIU and M. T. ÖZSU, eds.), pp. 532–538, Boston, MA: Springer US, 2009.

[26] P. Probst, B. Bischl, and A.-L. Boulesteix, Tunability: Importance of Hyperparameters
of Machine Learning Algorithms. Feb. 2018.

[27] D. Marinov and D. Karapetyan, “Hyperparameter Optimisation with Early Termina-
tion of Poor Performers,” CEEC 2019, Sept. 2019. arXiv: 1907.08651.

[28] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for Hyper-Parameter
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Appendix A

Portfolio

A.1 Jira

The Jira board that has been used for the project management and planning, contains
all of the tasks that were done in the project and can create reports summarising the full
project life-cycle. The board can be found here: Jira board.

A.2 GitLab

The GitLab repository contains all of the code for the project and can show the full history
of commits, throughout the project life-cycle. It also provides the platform for continuous
integration, that executes all functional tests, on every commit to the main branch. The
repository can be found here: GitLab repository.

https://cseejira.essex.ac.uk/secure/RapidBoard.jspa?rapidView=998&projectKey=CP
https://gitlab.com/dobromirM/customer-calls-prioritisation
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